Gold nanorods with aspect ratios of from 1 (particles) to 31.6 were synthesized by the seed-mediated method and packed in a highly ordered structure on a large scale on silicon substrates through capillary force induced self-assembly behaviour during solvent evaporation. The gold nanorod surface exhibits a strong enhancing effect on Raman scattering spectroscopy. The enhancement of Raman scattering for two model molecules (2-naphthalenethiol and rhodamine 6C) is about 5-6 orders of magnitude. By changing the aspect ratio of the Au nanorods, we found that the enhancement factors decreased with the increase of aspect ratios. The observed Raman scattering enhancement is strong and should be ascribed to the surface plasmon coupling between closely packed nanorods, which may result in huge local electromagnetic field enhancements in those confined junctions.
The single crystalline palladium nanocubes with an average size of 7 nm were prepared in the presence of poly (vinyl pyrrolidone) (PVP) and KBr using the polyol method. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The electrochemical catalytic activity of these Pd nanocubes towards methanol oxidation was found to be higher than that of spherical Pd nanoparticles of similar size.
Monodisperse Au-Fe3O4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution. The size of Au and Fe3O4 particles can be controlled by changing the injection temperature. UVis spectra show that the surface plasma resonance band of Au-Fe3O4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size. The as-prepared heterodimeric Au-Fe3O4 NPs exhibited superparamagnetic properties at room temperature. The Ag-Fe3O4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO3 as precursor instead of HAuCl4. It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.