The influence of different concentration of oxalic acid matrix on elemental inductively coupled plasma mass spectrometry (ICP-MS) has been investigated. It has been proved that the sensitivity of analytes can be significantly enhanced by adding small amounts of oxalic acid medium with adjusted nebulizer flow-rate gas, especially for the elements with ionization potential between 9 and 11 eV. Oxalic acid, as an enhancement agent, can be used to compensate the signal depression caused by inorganic matrix and to improve the detection limits about two to eight times, for the hard-to-ionize elements in ICP-MS determination.
An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au and Pb in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects due to the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination was tested and discussed. Correction for matrix effects, Sc, Rh and Bi were used as internal standards. The detection limits is 0.003-0.57 μg/g, the recovery ratio is 92.2%-111.2%, and the RSD is less than 3.6%. The method is accurate, quick and convenient. It has been applied to the determination of trace impurities in high purity cobalt with satisfactory results.
Trace elements were determined in high purity gold by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Sample were decomposed by aqua regia. To overcome some potentially problematic spectra/ interference, measurements were acquired in both medium and high resolution modes. The matrix effects due to the presence of excessive HCl and Au were evaluated. The optimum conditions for the determination was tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits range from 0.01ug/g to 0.28ug/g depending on the elements. The method is accurate, quick and convenient. It has been applied to the determination of trace elements in high purity gold with satisfactory results.
A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCI. The matrix effects because of the presence of excess HCI and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 ].tg·g^-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.