Molecular dynamics simulations of the displacement cascades in Fe 10%Cr systems are used to sinmlate the primary knocked-on atom events of the irradiation damage at temperatures 300, 600, and 750 K with primary knockedon atom energies between 1 and 15 keV. The results indicate that the vacancies produced by the cascade are all in the central region of the displacement cascade. During the cascade, all recoil Fe and Cr atoms combine with each other to form Fe Cr or Fe Fe interstitial dumbbells as well as interstitial clusters. The number and the size of interstitial clusters increase with the energy of the primary knocked-on atom and the temperature. A few large clusters consist of a large number of lee interstitials with a few Cr atoms, the rest are lee Cr clusters with small and medium sizes. The interstitial dumbbells of Fe lee and Fe-Cr are in the (111)and (110) series directions, respectively.