Spring maize is one of the most popular crops planted in northeastem China. The cropping systems involving spring maize have been maintaining high production through intensive management practices. However, the high rates of nitrogen (N) fertilizers application could have introduced a great amount of nitrous oxide (N2O) into the atmosphere. It is crucial for sustaining the maize production systems to reduce N2O emissions meanwhile maintaining the optimum yields by adopting alternative farming management practices. The goal of this study was to evaluate effects of alternative fertilization and crop residue management practices on N2O emission as well as crop yield for a typical maize field in northeastern China. Field experiments were conducted during the 2010-2011 maize growing seasons (from early May to late September) in Liaoning Province, northeastern China. N2O fluxes were measured at the field plots with six different treatments including no N fertilizer use (CK), farmers' conventional N fertilizer application rate (FP), reduced N fertilizer rate (OPT), reduced N fertilizer rate combined with crop straw amendment (OPTS), slow-release N fertilizer (CRF), and reduced N fertilizer rate combined with nitrification inhibitor (OPT+DCD). The static chamber method combined with gas chromatography technique was employed to conduct the measurements of N2O fluxes. The field data showed that N2O emissions varied across the treatments. During the maize growing season in 2010, the total N2O emissions under the treatments of CK, FP, OPT, OPTS, and CRF were 0.63, 1.11, 1.03, 1.26, and 0.98 kg N ha-1, respectively. The seasonal cumulative N2O emissions were 0.54, 1.07, 0.96, 1.12, and 0.84 kg N ha1, respectively, under CK, FP, OPT, OPTS, and OPT+DCD in 2011. In comparison with FP, CRF or OPT+DCD reduced the N2O emissions by 12 or 21%, respectively, while the crop yields remained unchanged. The results indicate that the reduction of N-fertilizer application rate in combination with
Agricultural production plays an important role in affecting atmospheric nitrous oxide (N20) concentrations. Field measurements were conducted in Dalian City, Liaoning Province in Northeast China from two consecutive years (2009 and 2010) to estimate NzO emissions from a spring maize field, a main cropping system across the Chinese agricultural regions. The observed flux data in conjunction with the local climate, soil and management information were utilized to test a process-based model, DeNitrification-DeComposition (DNDC), for its applicability for the cropping system. The validated DNDC was then used for exploring strategies to reduce N20 emissions from the target field. The results showed that the major N20 pulse emissions occurred with duration of about 3-5 d after fertilizer application in both years 2009 and 2010, which on average accounted for about 60% of the total N20 emissions each year. Rainfall and fertilizer application were the major factors influencing the N20 emissions from spring maize field. The average N20 flUXeS from the CK (control plot, without fertilization) and FP (traditional chemical N fertilizer) treatments were 23.1 and 60.6 gg m-2 h-~ in 2009, respectively, and 21.5 and 64.3 gg m-2 h-~ in 2010, respectively. The emission factors (EFs) of the applied N fertilizer (270 kg N ha-1) as N20- N were 0.62% in 2009 and 0.77% in 2010, respectively. The comparison of modeled daily NzO emission fluxes against observations indicated that the DNDC model had a good performance even if without adjusting the internal parameters. The modeled results showed that management practices such as no-till, changing timing or rate of fertilizer application, increasing residue incorporation, and other technically applicable measures could effectively reduce N20 emissions from the tested fields. Our study indicated that avoiding application of N fertilizers at heavy rainfall events or splitting the fertilizer into more applications would be the most feasible approaches to reduce N20
LI HuQIU Jian-junWANG Li-gangXU Ming-yiLIU Zhi-qiangWANG Wei