A simplified adaptive wing, which deflects its leading edge and trailing edge flaps to vary its shape, is calculated to investigate the potential aerodynamic gains and compared with a biobjective optimization (BO) wing in the present paper. In subsonic-transonic flights the deflection angle of a flap is determined through optimization using a deterministic method. In supersonic flight the flaps are not deflected due to the requirement of having a minimum drag. For comparison the aerodynamic characteristics of a BO airfoil and wing is calculated. A parallel genetic algorithm is used in BO. Euler equations served as governing equations in flow field calculation. Numerical results in both 2D (airfoil) and 3D (wing) cases show that aerodynamic performances of the two design airfoils and wings are much better than those of the original ones, with the adaptive design one the best. Keywords simplified adaptive wing - biobjective optimization - airfoil and wing design
To extend available monoobjective optimization methods to multiobjective and multidisciplinary optimization, the construction of a suitable resultant objective function (in deterministic method-DM) or a fitness function (in genetic algorithm-GA) is important. An objective function combination method (OFCM) of constructing such a function for constrained optimization problems is suggested. How to use both deterministic and genetic algorithms to biobjetive and bidisciplinary optimal design of high performance airfoils and wings is discussed. Numerical results in both 2D (airfoil) and 3D (wing) cases show that the present method can be used to optimaize different kinds of initial airfoils and wings. The performance of optimized shape is improved significantly. The method is successful and effective.