This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period between January 2001 through June 2003 including temperature data from the expendable bathythermographs (XBT), thermistor data from the Tropical Ocean Global Atmosphere Tropical Atmosphere-Ocean (TOGA-TAO) mooring array, sea level anomalies from the Topex/Poseidon and Jason-1 altimetry (T/P-J), and temperature and salinity profiles from the Array for Real-time Geostrophic Oceanography (ARGO) floats. An efficient three-dimensional variational analysis-based method was introduced to assimilate the above data into the tropical-Pacific circulation model. To evaluate the impact of the individual component of the observing system, four observation system experiments were carried out. The experiment that assimilated all four components of the observing system was taken as the reference. The other three experiments were implemented by withholding one of the four components. Results show that the spatial distribution of the data influences its relative contribution. XBT observations produce the most distinguished effects on temperature analyses in the off-equatorial region due to the large amount of measurements and high quality. Similarly, the impact of TAO is dominant in the equatorial region due to the focus of the spatial distribution. The Topex/Poseidon-Jason-1 can be highly complementary where the XBT and TAO observations are sparse. The contribution of XBT or TAO on the assimilated salinity is made by the model dynamics because no salinity observations from them are assimilated. Therefore, T/P-J, as a main source for providing salinity data, has been shown to have greater impacts than either XBT or TAO on the salinity analysis. Although ARGO includes the subsurface observations, the relatively smaller number of observation makes it have the smallest contribution to the assimilation syst
This study investigated the impact of different verification-area designs on the sensitive areas identified using the conditional nonlinear optimal perturbation (CNOP) method for tropical cyclone targeted observations.The sensitive areas identified using the first singular vector (FSV) method,which is the linear approximation of CNOP,were also investigated for comparison.By analyzing the validity of the sensitive areas,the proper design of a verification area was developed.Tropical cyclone Rananim,which occurred in August 2004 in the northwest Pacific Ocean,was studied.Two sets of verification areas were designed;one changed position,and the other changed both size and position.The CNOP and its identified sensitive areas were found to be less sensitive to small variations of the verification areas than those of the FSV and its sensitive areas.With larger variations of the verification area,the CNOP and the FSV as well as their identified sensitive areas changed substantially.In terms of reducing forecast errors in the verification area,the CNOP-identified sensitive areas were more beneficial than those identified using FSV.The design of the verification area is important for cyclone prediction.The verification area should be designed with a proper size according to the possible locations of the cyclone obtained from the ensemble forecast results.In addition,the development trend of the cyclone analyzed from its dynamic mechanisms was another reference.When the general position of the verification area was determined,a small variation in size or position had little influence on the results of CNOP.
Recent studies have found cold biases in a fraction of Argo profiles (hereinafter referred to as bad Array for Real-time Geostrophic Oceanography (Argo) profiles) due to the pressure drifts during 2003 and 2006. These bad Argo profiles have had an important impact on in situ observation-based global ocean heat content esti- mates. This study investigated the impact of bad Argo profiles on ocean data assimilation results that were based on observations from diverse ocean observation systems, such as in situ profiles (e.g., Argo, expendable bathy- thermograph (XBT), and Tropical Atmosphere Ocean (TAO), remote-sensing sea surface temperature products and satellite altimetry between 2004 and 2006. Results from this work show that the upper ocean heat content analysis is vulnerable to bad Argo profiles and demon- strate a cooling trend in the studied period despite the multiple independent data types that were assimilated. When the bad Argo profiles were excluded from the as- similation, the decreased heat content disappeared and a warming occurred. Combination of satellite altimetry and mass variation data from gravity satellite demonstrated an increase, which agrees well with the increased heat con- tent. Additionally, when an additional Argo profile quality control procedure was utilized that simply removed the profiles that presented static unstable water columns, the results were very similar to those obtained when the bad Argo profiles were excluded from the assimilation. This indicates that an ocean data assimilation that uses multiple data sources with improved quality control could be less vulnerable to a major observation system failure, such as a bad Argo event.