High-resolution satellite measurements are used to study the air-sea interaction over the Kuroshio Extension (KE) region during spring time. There are two oceanic fronts in the KE region off the east coast of Japan. These fronts are generally associated with strong ocean currents, which may display unstable meander, resulting in remarkable warm sea surface temperature (SST) ridges and cold SST troughs. Analyses of these satellite observations reveal a significantly positive correlation between sea surface wind speed and its underlying SST along these fronts. This positive SST-wind correlation be-comes even more significant when strong meanders occur along the fronts. This positive SST-wind correlation indicates an ocean-to-atmosphere feedback over the KE region during spring time. A high-resolution regional atmospheric model is used to investigate the atmospheric response to SST changes along the two fronts.
The Sea Surface Height Anomaly (SSHA) from the TOPEX/Poseidon altimeter data in 1994 is assimilated into a high-resolution model of the South China Sea (SCS) with nudging method. The model results can reveal the seasonal variations of SSHA and its time-space migration characters,at the same time,verify the effect of assimilation.Compared with non-assimilation results,assimilation results can show the seasonal variations of SSHA better,particularly in winter.Futhermore,it can distinguish temporal-spatial migration characters of SSHA clearly,i.e. cold signal of SSHA in northern SCS propagating westward and warm signal of SSHA in central SCS propagating eastward.It shows that as an easy and effective method,data assimilation of the SSHA with nudging method could make the simulated results closer to the available observations.