In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants.
This paper reports that the CoFe/IrMn bilayers are deposited by magnetron sputtering on the surfaces of thermallyoxidized Si substrates. It investigates the thermal relaxations of both non-irradiated and Ca^+ ion irradiated CoFe/IrMn bilayers by means of holding the bilayers in a negative saturation field. The results show that exchange bias field decreases with the increase of holding time period for both non-irradiated and Ca^+ ion irradiated CoFe/IrMn bilayers. Exchange bias field is also found to be smaller upon irradiation at higher ion dose. This reduction of exchange bias field is attributed to the change of energy barrier induced by ion-radiation.
This paper reports that a CoFe/IrMn bilayer was deposited by high vacuum magnetron sputtering on silicon wafer substrate; the thermal relaxation of the CoFe/IrMn bilayer is investigated by means of holding the film in a negative saturation field at various temperatures. The exchange bias decreases with increasing period of time while holding the film in a negative saturation field at a given temperature. Increasing the temperature accelerates the decrease of exchange field. The results can be explained by the quantitative model of the nucleation and growth of antiferromagnetic domains suggested by Xi H Wet al. [2007 Phys. Rev. B 75 014434], and it is believed that two energy barriers exist in the investigated temperature range.
Ga^+ ion irradiation is performed on the surfaces of IrMn-based spin valves and the effects of ion irradiation on the magnetisation reversal process and magnetoresistance (MR) are investigated. The results show that the exchange bias field and magnetoresistance ratio of the spin valve decrease with the increase of ion dose. The width of the forward step between the free layer and the pinned layer becomes gradually smaller with the increase of ion dose whilst the recoil step tends to be narrower with ion dose increasing up to 6×10^13 ions/cm^2 and the step disappears afterwards. Two oeaks in the R-H curve are found to be asymmetric.