In this paper the consensus of multi-agent system in directed network,where the agent is described by a second...
Jidong Jin~(1,3),Yufan Zheng~(1,2),Haibin Shao~1,Linglin Shu~1 1.Department of Mathematics,Shanghai University,Shanghai 200444,China 2.Department of Electrical and Electronics Engineering,The University of Melbourne,Australia 3.Department of Computer Science and Technology,Capital University of Economics and Business,Beijing 100070,China
This paper investigates the global behavior of controlled dynamical agents in directed networks. The agents are Lyapunov stable, are distributed in a line, and communicate through a directed network. The communication topology of the network is characterized by a directed graph and the control protocol is designed in simple linear decentralized feedback law. We study the different conditions under which agents will achieve aggregation, and critical and divergent trajectories, respectively. Our investigation on the dynamical agent system under network is extended to the time-delay network case. Furthermore, we study the case with two pre-specified virtual leaders in the system. Numerical simulations are given and demonstrate that our theoretical results are effective.
In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.
This paper deals with the stochastic stability of networked control systems with the presence of network- induced delay and transmitted data dropout. Based on the Lyapunov approach, sufficient conditions for the mean-square stability of the networked control system are derived subject that the sequence of transmission interval is driven by an identically independently distributed sequence and by a finite state Markov chain, respectively. Stabilization controllers are constructed in terms of linear matrix inequalities correspondingly. An example is provided to illustrate our results.