The urea-catalyzed aziridination of 1,2-vicinal haloamines derived from aminohalogenation of olefins has been developed. This rapid and simple method was carried out by simply grinding the solid mixture of the substrate, K2CO3 and catalytic amount of urea at room temperature in air. The reaction provides a protocol for quantitative preparation of aziridines in a large scope of aminohalogenated derivatives of olefins including α,β-unsaturated ketones, α,β-unsaturated esters and simple olefins. The possible mechanism involving an H-bond promoting deprotonation has been suggested for this reaction.
(+)-Tartaric acid-catalyzed aminobromination of α,β-unsaturated ketones, α,β-unsaturated esters and simple olefins utilizing TsNHJNBS as the nitrogen/halogen sources at room temperature without protection of inert gases achieved good yields (up to 92% yield) of vicinal haloamino products with excellent regio- and stereoselectivity, even just 10% of (+)-tartaric acid was used as catalyst. The regio- and stereochemistry was unambiguously confirmed by X-ray structural analysis of products 2b and 12e. The electron-rich and deficient olefins show significant differences in activity to the aminobromination reaction and give the opposite regioselectivities. The 21 cases have been investigated which indicated that our protocol has the advantage of a large scope of olefins. Additionally, tartaric acid as catalyst has the advantage of avoiding any hazardous metals retained in products.