针对传统多层关联分类挖掘产生大量冗余规则而影响分类效率的问题,提出了一种基于类FP-tree的多层关联分类器MACCF(Multi-level Associative Classifier based on Class FP-tree)。该分类器依据事务的类标号划分训练集,采用闭频繁模式(CLOSET+)产生完全候选项目集,通过设计适当的类内规则剪枝策略和类间规则剪枝策略,减少了大量冗余的分类规则,提高了分类的准确率;采用交叉关联规则方法,解决了交叉层数据的分类问题,实验结果表明了算法的高效性。