A glutathione peroxidase(GPX) mimic, 2-selenium bridged β-cyclodextrin(2-SeCD), was synthesized. In order to examine its role and mechanism in treating stroke we chose stroke-prone spontaneously hypertensive rats(SHRsp) as animal model. 56 SHRsps of 8-week olds were randomly divided into several groups: test groups (low, moderate, high dose of 2-SeCD) and control groups(positive and negative). After onset of the stroke, the rats in test groups were orally administrated with different amounts of 2-SeCD, the positive control group with ebselen, and the negative control group with drinking water. The treatment lasted two weeks, followed by observation of the rats for 10 days, meanwhile blood pressure, biochemical parameters of plasma, and the contents of nitric oxide(NO) and malondialdehyde(MDA) in plasma and brain were determined. The results show that there were significant differences in contents of NO and MDA in plasma and brain between the test groups(high, moderate dose of 2-SeCD) and negative control group. The NO contents of the test groups were obviously higher than that of the negative control group (P〈0.01). The MDA contents of the test groups(high, moderate dose of 2-SeCD) were obviously lower than that of the negative control group(P〈0.01). The mechanism of 2-SeCD in treating stroke was discussed, which maybe related to the increase of NO and the decrease of MDA in plasma and brain tissue, but the exact mechanism should be further studied. Moreover, the tendencies of changes in systolic blood pressure, contents of NO and MDA, and other physiological parameters for the test groups were shown to be much better than the corresponding parameters for the positive group(the group with ebselen)(P〈0.05), indicating that the treatment effect of 2-SeCD is better than that of ebselen.
JIA Zhi-dan LIN Feng LIU Lei MU Ying YAN Gang-lin LUO Gui-min
Glutathione peroxidase(GPX) plays an important role in scavenging reactive oxygen species. A series of catalytic antibodies with GPX activity have been generated by the authors of' this study. To obtain humanized catalytic antibodies, the phage-displayed human antibody library was used to select novel antibodies by repetitive screening, Phage antibodies, scFv-B8 and scFv-H6 with the GSH-binding site, were obtained from the library by enzyme-linked immu- nosorbent assay(ELISA) analysis with 4 rounds of scelection against their respective haptens, S-2,4-dinitriphenyl t-butyl ester(GStI-s-DNP-Bu) and S-2,4-dinit,-iphenyl t-hexyl ester(GSH-s-I)NP-He). Nevertheless, several studies need to be condueted to determine whether scFv-B8 and seFv-tI6 possess GPX activity. 1'o enhance the speed of the selection, selenocysteine(Sec, the catalytic group of GPX) was incorporated directly into the phages, scFv-B8 and seFv-H6, by chemical mutation to form the phages Se-scFv-B8 and Se-scFv-H6. The GPX activities were found to be 3012 units/μmol and 2102 units/μmol, respectively. To improve the GPX activity of the phage Se-scFv-B8, DNA shuffling was used to construct a secondary library and another positive phage antibody scFv-B9 was screened out by another panning against GSH-s-DNP-Bu. When Sec was incorporated via chemical mutation into the phage antibody scFv-B9, its GPX activity reached 3560 units/μmol, which is 1.17-fold higher than the phage antibody Se-scFv-B8 and almost approached the order of magnitude of native GPX. The rapid selection is the prerequisite for generating humanized Se-seFv with GPX activity.
LIN FengLI YingYANG Wen-kuiLIANG BingMU YingSUN YeLI WeiLUO Gui-min