UltrasmaU Au10 clusters have a unique electronic structure and can act as a charge reservoir to donate electrons or accept charges. This is particularly important for catalysis, since it leads to facile charge transfer across the interface between the gold species and the oxide substrate. To determine the electronic and structural effects of Au10 on the catalytic oxidation, a TiO2 charge carrier was chosen as the substrate to anchor Au10 for olefin oxidation. Au10 supported on TiO2-RP (RP = pyramid-capped columnar structure) exhibited superior catalytic activity to Au10/TiO2 nanotubes and Au10/P25. In addition, the supported Au10 clusters gave rise to higher activity than supported Au20, Au144 clusters, and 5 nm Au nanocrystals. The superior catalytic ability of Au^0fFiO2-RP arises from the charge/discharge effect of the Au10/TiO2-RP interface, which effectively improves the formation of active oxygen species on electron-rich gold atoms at the terminal position of Au10, and promotes the activation of olefin C--C bonds on the electron-deficient gold atoms of Au10.
To gain deep insight into the Morphological effect of NixMg1-xO catalysts on the reaction of CO2reforming with methane, we designed and fabricated three different spatial structural NixMg1-xO catalysts.These NixMg1-xO catalysts with specific models such as rod, sheet and sphere, exhibited various activity and stability in CO2reforming reaction. Herein NixMg1-xO nanorods displayed higher catalytic activity, in which methane conversion was up to 72% and CO2conversion was 64% at 670°C with a space velocity of 79,200 mL/(gcath), compared with nanosheet and nanosphere counterparts. Furthermore, both catalysts of NixMg1-xO nanorod and nanosheet showed a high resistance toward coke deposition and sintering of active sites in the process of CO2reforming of methane.