本文简要介绍了多重网格方法的基本思想和原理,然后应用多重网格(MG)方法求解三维泊松方程,网格尺度从17×17×17逐次增加至257×257×257,并与不完全Chelesky共轭梯度法(ICCG)、Gauss直接解法进行比较.结果表明,MG方法计算速度明显优于ICCG、Gauss方法,对于129×129×129网格的三维数值模拟费时43s,比ICCG法快7倍,而对于257×257×257超大型网格的三维数值模拟也仅需412 s.
Based on the analysis of the conjugate gradient algorithm, we implement a threedimensional (3D) conjugate gradient inversion algorithm with magnetotelluric impedance data. During the inversion process, the 3D conjugate gradient inversion algorithm doesn' t need to compute and store the Jacobian matrix but directly updates the model from the computation of the Jacobian matrix. Requiring only one forward and four pseudo-forward modeling applications per frequency to produce the model update at each iteration, this algorithm efficiently reduces the computation of the inversion. From a trial inversion with synthetic magnetotelluric data, the validity and stability of the 3D conjugate gradient inversion algorithm is verified.