By analyzing the mechanical properties, composition of hydrates, content of Ca(OH): and microstructure of the complex binder of silica fume-Portland cement, which cured at constant low temperatures(+5--10 ℃), the effect of different low temperatures on hydration performance of the complex binder at the age of 3, 7 days and 14 days was researched. Experimental results show that hydration processes of the complex binder can be restricted by low temperature. Reducing the curing temperature could cause compressive strength and flexural strength of the complex binder to decrease significantly. The gradient difference between strength diminishes, content of Ca(OH)2 in hydrates reduces, and compactness of the microstructure weakens. Therefore mixing with silica fume can modify various performance indicators of the complex blinder, but reducing the curing temperature restricts the pozzolanic activity of silicon fume.
The antifreeze critical strength and the pre-curing time of low-temperature concrete were studied by means of guaranteed rate of compressive strength and antifreeze performance for the structural safety requirement of concrete engineering,suffering once freeze damage under air environment.It is shown that the antifreeze critical strength is 3.7-4.4MPa,pre-curing time is 18-32 h by guaranteed rate of compressive strength,and the antifreeze critical strength is 3.7-4.4MPa,pre-curing time is 18-32 h by guaranteed rate of antifreeze performance.It can be found that the method of guaranteed rate of compressive strength is sensitive to the defect which generated by freeze damage in the concrete interior.The method is fit to evaluate the antifreeze critical strength of low-temperature concrete.