您的位置: 专家智库 > >

国家自然科学基金(30901731)

作品数:2 被引量:10H指数:1
相关作者:胡汛王跃东余捷凯叶再元竺杨文更多>>
相关机构:浙江大学医学院附属第二医院浙江省人民医院更多>>
发文基金:国家自然科学基金浙江省科技厅项目更多>>
相关领域:医药卫生更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇医药卫生

主题

  • 1篇蛋白
  • 1篇蛋白质
  • 1篇蛋白质类
  • 1篇电离
  • 1篇血蛋白质类
  • 1篇胰腺
  • 1篇胰腺肿瘤
  • 1篇支持向量
  • 1篇支持向量机
  • 1篇支持向量机模...
  • 1篇肿瘤
  • 1篇肿瘤标记
  • 1篇腺肿瘤
  • 1篇向量
  • 1篇向量机
  • 1篇基质
  • 1篇基质辅助激光...
  • 1篇激光
  • 1篇光解
  • 1篇光谱

机构

  • 1篇浙江省人民医...
  • 1篇浙江大学医学...

作者

  • 1篇竺杨文
  • 1篇叶再元
  • 1篇余捷凯
  • 1篇王跃东
  • 1篇胡汛

传媒

  • 1篇浙江大学学报...
  • 1篇Journa...

年份

  • 2篇2012
2 条 记 录,以下是 1-2
排序方式:
Combining proteomics, serum biomarkers and bioinformatics to discriminate between esophageal squamous cell carcinoma and pre-cancerous lesion被引量:9
2012年
Objective: Biomarker assay is a noninvasive method for the early detection of esophageal squamous cellcarcinoma (ESCC). Searching for new biomarkers with high specificity and sensitivity is very important for the earlydetection of ESCC. Serum surface-enhanced laser desorption/ionization-time of flight mass spectrometry(SELDI-TOF-MS) is a high throughput technology for identifying cancer biomarkers using drops of sera. Methods: Inthis study, 185 serum samples were taken from ESCC patients in a high incidence area and screened by SELDI. Asupport vector machine (SVM) algorithm was adopted to analyze the samples. Results: The SVM patterns success-fully distinguished ESCC from pre-cancerous lesions (PCLs). Also, types of PCL, including dysplasia (DYS) and basalcell hyperplasia (BCH), and healthy controls (HC) were distinguished with an accuracy of 95.2% (DYS), 96.6% (BCH),and 93.8% (HC), respectively. A marker of 25.1 kDa was identified in the ESCC patterns whose peak intensity wasobserved to increase significantly during the development of esophageal carcinogenesis, and to decrease obviously after surgery. Conclusions: We selected five ESCC biomarkers to form a diagnostic pattern which can discriminateamong the different stages of esophageal carcinogenesis. This pattern can significantly improve the detection ofESCC.
Xiao-hui ZHAIJie-kai YUChen LINLi-dong WANGShu ZHENG
血清蛋白质质谱与支持向量机模型在胰腺癌检测上的应用被引量:1
2012年
目的:为提高胰腺癌的早期检测率筛选新的标志物,应用蛋白芯片结合表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)技术建立胰腺癌的血清蛋白质质谱模型。方法:用弱阳离子交换芯片(CM10)结合SELDI-TOF-MS技术检测了73例血清样本,其中31例胰腺癌,22例胰腺炎,20例健康人。用支持向量机方法建立胰腺癌和健康人以及胰腺癌和胰腺炎的辨别模型。结果:胰腺癌和健康人辨别模型用了3个蛋白质峰,辨别的敏感性和特异性均为100%,而胰腺癌和胰腺炎辨别模型用了5个蛋白质峰,辨别的特异性和敏感性分别为95.5%和93.5%。结论:SELDI-TOF-MS技术结合生物信息学方法检测胰腺癌具有较高的敏感性和特异性。
竺杨文王跃东叶再元胡汛余捷凯
共1页<1>
聚类工具0