There is a limited knowledge of spatial heterogeneity in soil nutrients and soil respiration in the semi-arid and arid grasslands of China. This study investigated the spatial differences in soil nutrients and soil respiration among three desertified grasslands and within two shrub-dominated communities on the Ordos Plateau of Inner Mongolia, China in 2006. Both soil organic carbon (SOC) and total nitrogen (TN) were significantly different (P 〈 0.01) among the three desertified grasslands along a degradation gradient. Within the two shrub-dominated communities, the SOC and TN contents decreased with increasing distance from the main stems of the shrub, and this "fertile island" effect was most pronounced in the surface soil. The total soil respirations during the growing season were 131.26, 95.95, and 118.66 g C m^-2, respectively, for the steppe, shrub, and shrub-perennial grass communities. The coefficient of variability of soil respiration was the highest in the shrub community and lowest in the steppe community. CO2 effiuxes from the soil under the canopy of shrub were significantly higher than those from the soil covered with biological crusts and the bare soil in the interplant spaces in the shrub community. However, soil respiration beneath the shrubs was not different from that of the soil in the inter-shrub of the shrub-perennial grass community. This is probably due to the smaller shrub size. In the two shrub-dominated communities, spatial variability in soil respiration was found to depend on soil water content and C:N ratio.
Precipitation is the major driver of ecosystem functions and processes in semiarid and arid regions. In such waterlimited ecosystems, pulsed water inputs directly control the belowground processes through a series of soil drying and rewetting cycles. To investigate the effects of sporadic addition of water on soil CO2 effux, an artificial precipitation event (3 mm) was applied to a desert shrub ecosystem in the Mu Us Sand Land of the Ordos Plateau in China. Soil respiration rate increased 2.8 4.1 times immediately after adding water in the field, and then it returned to background level within 48 h. During the experiment, soil CO2 production was between 2 047.0 and 7 383.0 mg m^-2. In the shrubland, soil respiration responses showed spatial variations, having stronger pulse effects beneath the shrubs than in the interplant spaces. The spatial variation of the soil respiration responses was closely related with the heterogeneity of soil substrate availability. Apart from precipitation, soil organic carbon and total nitrogen pool were also identified as determinants of soil CO2 loss in desert ecosystems.
Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effiuxes from soil of a semiarid Aneurolepidium chinense steppe and a Stipa krylovii steppe in the Xilin River Basin of Inner Mongolia, China from March 2002 to December 2004. The results indicated that the soil respiration rates of the semiarid Aneurolepidium chinense steppe and the Stipa krylovii steppe were both relatively high from mid-May to mid-September of each year and remained low during the rest of the year. The minimum value of soil respiration occurred in December or January and negative effiuxes of CO2 appeared for several days during the non-growing season of individual years at the two sampling sites. A high annual variation was found in the two steppes with the coefficients of variance (CV) being over 94%, even high to 131%. The annual sums of soil CO2 effiux of the Aneurolepidium chinense steppe varied between 356.4 gC m^-2 yr^-1 and 408.8 gC m^-2 yr^-1, while those of the Stipa krylovii steppe in the three years were in the range of 110.6 gC m^-2 yr^-1 to 148.6 g Cm^-2 yr^-1. The mean respiration rates of the Aneurolepidium chinense steppe were significantly higher than those of the Stipa krylovii steppe in different statistical periods with the exception of the non-growing season. About 59.9% and 80.6% of the soil respiration variations in both steppes for the whole sampling period were caused by the changes of temperature and soil water content. In the Aneurolepidium chinense steppe, the soil respiration rate has significant or extremely significant positive correlation (r = 0.58 - 0.85, p 〈 0.05 or p 〈 0.01) with air temperature and ground temperature of the topsoil except in 2002; the unique contributions of temperature change to the soil respiration variation of the three years were 53.3%, 81.0% and 58.6%, respectively. But, for the Stipa krylovii steppe in the same time interval, the soil water content (especially that of the 10-20
The seasonal dynamics of soil respiration in steppe (S. bungeana), desert shrub (A. ordosica), and shrubperennial (A. ordosica +C. komarovii) communities were investigated during the growth season (May to October) in 2006; their environmental driving factors were also analyzed. In the three communities, soil respiration showed similar characteristics in their growth seasons, with peak respiration values in July and August owing to suitable temperature and soil moisture conditions during this period. Meanwhile, changes in soil respiration were greatly influenced by temperatures and surface soil moistures. Soil water content at a depth of 0 to 10 cm was identified as the key environmental factor affecting the variation in soil respiration in the steppe. In contrast, in desert shrub and shrub-perennial communities, the dynamics of soil respiration was significantly influenced by air temperature. Similarly, the various responses of soil respiration to environmental factors may be attributed to the different soil textures and distribution patterns of plant roots. In desert ecosystems, precipitation results in soil respiration pulses. Soil carbon dioxide (CO2) effluxes greatly increased after rainfall rewetting in all of the ecosystems under study. However, the precipitation pulse effect differed across the ecosystem. We propose that this may be a result of a reverse effect from the soil texture.