Fourier-domain rapid scanning optical delay line (RSOD) was introduced for phase modulation and depth scanning in a time-domain optical coherence tomography (TD-OCT) system. Investigation of parameter optimization of RSOD was conducted. Experiments for RSOD characterization at different parameters of the groove pitch, focal length, galvomirror size, etc. were performed. By implementing the optimized RSOD in our established TD-OCT system with a broadband light source centered at 840 nm with 50 nm bandwidth, in vivo retina imaging of a rabbit was presented, demonstrating the feasibility of high-quality TD-OCT imaging using an RSOD-based phase modulator.
A novel spectral calibration method is developed for spectral domain optical coherence tomography system. The method is based on two measurements of interference spectra from two reference mirror positions. It removes the influence of dispersion mismatch, and hence accurately determines the spectral distribution on the line-scan charge-coupled device (CCD) for sequent precise interpolation. High quality imaging can be realized with this method. Elimination of the degradation effect caused by dispersion mismatch is verified experimentally, and improved two-dimensional (2D) imaging of fresh orange pulp based on the proposed spectral calibration method is demonstrated.
We develop a high-speed tunable, quasi-continuous-wave laser source for frequency domain (FD) optical coherence tomography (OCT). The laser resonance is realized within a unidirectional all-fiber ring cavity consisting of a fiber coupler, two fiber isolators, a semiconductor optical amplifier (SOA), and a fiber Fabry- Perot tunable filter (FFP-TF) for frequency tuning. Light output from the coupler is further amplified and spectral shaped by a booster SOA terminated at both ends with two isolators. The developed laser source provides up to 8000 sweeps per second over a full-width wavelength tuning range of 120 nm at center wavelength of 1320 nm with an average power of 9 mW, yielding an axial resolution of 13.6μm in air and a maximum sensitivity of about 112 dB for OCT imaging. The instantaneous linewidth is about 0.08 nm, enabling OCT imaging over an axial range of 3.4 mm in air. For optimization consideration based on this custom-built swept laser, experimental study on imaging quality relevant parameters of the swept laser with sine and ramp driving waveforms to the FFP-TF is conducted, and investigation of the swept laser on the cavity length is done. Implementing the laser source in our established swept source based OCT (SS-OCT) system, real-time structural imaging of biological tissue is demonstrated.
An automated optical system is built up to perform goniometric measurement of scattering phase function. Measurements of typical samples including monodisperse polystyrene micro-spheres solution, and mutlidis- perse polystyrene micro-spheres solution are carried out in a dark room. The possibility of estimating the average particle size of phantom through analyzing its scattering phase function is demonstrated.
A swept-source optical coherence tomography(SSOCT)system based on a high-speed scanning laser source at center wavelength of 1320 nm and scanning rate of 20 kHz is developed.The axial resolution is enhanced to 8.3μm by reshaping the spectrum in frequency domain using a window function and a wave number calibration method based on a Mach-Zender Interferometer(MZI)integrated in the SSOCT system.The imaging speed and depth range are 0.04 s per frame and 3.9 mm,respectively.The peak sensitivity of the SSOCT system is calibrated to be 112 dB.With the developed SSOCT system,optical coherence tomography(OCT)images of human finger tissue are obtained which enable us to view the sweat duct(SD),stratum corneum(SC)and epidermis(ED),demonstrating the feasibility of the SSOCT system for in vivo biomedical imaging.