Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.
Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17onode quadrilateral element has been developed using the bivaxiate quaxtic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.
Current patch test for Mindlin plate element only satisfies the zero shear deformation condition.The patch test of non-zero constant shear for Mindlin plate problem cannot be performed.For shell element, the patch test does not even exist.Based on the theory of enhanced patch test proposed by Chen W J (2006),the authors proposed the enhanced patch test function for Mindlin plate and thin cylindrical shell elements.This enhanced patch test function can be used to assess the convergence of the Mindlin plate and cylindrical thin shell elements.
CHEN WanJi 1,2 ,WANG JinZhi 1,3 &ZHAO Jie 1 1State Key Laboratory for Structural Analysis of Industrial Equipment,Dalian University of Technology,Dalian 116023,China
The enhanced patch test proposed by Chen W J(2006) can be used to assess the convergence of the problem with non-homogeneous differential equations.Based on this theory,we establish the patch test function for axisymmetric elements of conventional and couple stress theories,and reach an important conclusion that the patch test function for axisymmetric elements cannot contain non-zero constant shear.
In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.