The study aims at observation of precipitation distribution micrograph and analysis of forming kinetics mechanism of microstructure particles of Al-Si-Cu-Mg alloys. The microstructure morphology of some particles such as primary silicon and precipitates from the matrix of Al-Si-Cu-Mg alloys is observed by OM,SEM and EDS. The primary silicon forming kinetics is analyzed by EBSD. Twin plane re-entrant edge growth mode results in the blocky or diamonded TRD morphology formation. The precipitates of Q-Al5Cu2Mg8Si6,θ-Al2Cu,β-Al5FeSi and ε-Mg2Si are characterized by EDS and they are distributed in the eutectic region. The forming kinetics of them is analyzed by DSC. Six peaks are present in particles formation in different temperature ranges.The particles forming are determined by the analysis of the DSC traces during heating and cooling of Al-Si-CuMg alloys.
There are many researches on the deformation behavior of wrought magnesium alloys, such as AZ31, AZ80, AZ91, and ZK60 magnesium alloys at different temperatures and strain rates, but few of them focuses on the deformation behavior of AZ41M and ZK60M alloys, especially under the twin-roll casting (TRC) state. Meanwhile, the existing researches only focus on the grain refinement law of the magnesium alloys under deformation conditions, the deformation mechanism has not been revealed yet. The hot compression behavior of AZ41M and ZK60M magnesium alloys under the temperature and strain rate ranges of 250-400 ℃ and 0.001-1 s-1 are studied by thermal simulation methods using Gleeble 1500 machine and virtual simulation using finite element analysis software. Simulation results show that sine hyperbolic law is the most suitable flow stress model for wider deformation conditions. The most reasonable selected deformation conditions of ZK60M alloy is 350 oC/0.1 s-1 for TRC and 350 oC/1 s-1 for conventional casting (CC), while AZ41M alloy is 300 oC/0.01 s-1 for TRC and 350 oC/0.1 s-1 for CC. Deformation behavior and dynamic recrystallization (DRX) mechanism of them are analyzed at the same deformation conditions. The microstructures of AZ41M and ZK60M alloys are observed at different deformed conditions by optical microscopy (OM) and electron back scatter diffraction (EBSD) and it reveals the flow behavior and deformation mechanism of them. Working harden and work soften contribute to the activation of basal, non-basal slip systems which promote DRX. The proposed research reveals the deformation behavior and mechanism of the AZ41M and ZK 60M magnesium alloys and concludes their optimized deformation parameters and processes and provides a theory basis for their manufacturing and application.
WANG ShourenSONG LinghuiKANG SukbongCHO JaehyungWANG Yingzi