A scalable self-aligned approach is employed to fabricate monolayer graphene field-effect transistors on semi-insulated 4H-SiC (0001) substrates. The self-aligned process minimized access resistance and parasitic capacitance. Self-oxidized Al2O3, formed by deposition of 2 nm A1 followed by exposure in air to be oxidized, is used as gate dielectric and shows excellent insulation. An intrinsic cutoff frequency of 34 GHz and maximum oscillation frequency of 36.4 GHz are realized for the monolayer graphene field-effect transistor with a gate length of 0.2 μm. These studies show a pathway to fabricate graphene transistors for future applications in ultra-high frequency circuits.
2D material of graphene has inspired huge interest in fabricating of solid state gas sensors.In this work,epitaxial graphene,quasi-free-standing graphene,and CVD epitaxial graphene samples on SiC substrates are used to fabricate gas sensors.Defects are introduced into graphene using SF6 plasma treatment to improve the performance of the gas sensors.The epitaxial graphene shows high sensitivity to NO2 with response of 105.1%to 4 ppm NO2 and detection limit of 1 ppb.The higher sensitivity of epitaxial graphene compared to quasi-free-standing graphene,and CVD epitaxial graphene was found to be related to the different doping types of the samples.
Cui YuQingbin LiuZezhao HeXuedong GaoEnxiu WuJianchao GuoChuangjie ZhouZhihong Feng
In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point),the drainsource current decreases obviously with increasing temperature,but it has little change at a gate bias of +8 V(near Dirac point).The competing interactions between scattering and thermal activation are responsible for the different reduction tendencies.Four different kinds of scatterings are taken into account to qualitatively analyze the carrier mobility under different temperatures.The devices exhibit almost unchanged DC performances after high temperature measurements at 200℃ for 5 hours in air ambience,demonstrating the high thermal stabilities of the bilayer epitaxial graphene devices.