The question of how the category of entwined modules can be made into a braided monoidal category is studied. First, the sufficient and necessary conditions making the category into a monoidal category are obtained by using the fact that if (A, C, ψ) is an entwining structure, then A × C can be made into an entwined module. The conditions are that the algebra and coalgebra in question are both bialgebras with some extra compatibility relations. Then given a monodial category of entwined modules, the braiding is constructed by means of a twisted convolution invertible map Q, and the conditions making the category form into a braided monoidal category are obtained similarly. Finally, the construction is applied to the category of Doi-Hopf modules and (α, β )-Yetter-Drinfeld modules as examples.
A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we introduce the notion of a zip module, which is a generalization of the right zip ring. A number of properties of this sort of modules are established, and the equivalent conditions of the right zip ring R are given. Moreover, the zip properties of matrices and polynomials over a module M are studied.
For a right R-module N, we introduce the quasi-Armendariz modules which are a common generalization of the Armendariz modules and the quasi-Armendariz rings, and investigate their properties. Moreover, we prove that NR is quasi-Armendariz if and only if Mm(N)Mm(R) is quasi-Armendariz if and only if Tm(N)Tm(R) is quasi-Armendariz, where Mm(N) and Tm(N) denote the m×m full matrix and the m×m upper triangular matrix over N, respectively. NR is quasi-Armendariz if and only if N[x]R[x] is quasi-Armendariz. It is shown that every quasi-Baer module is quasi-Armendariz module.
In this note we first show that if H is a finite-dimensional Hopf algebra in a group Yetter-Drinfel'd category L^LyD(π) over a crossed Hopf group-coalgebra L, then its dual H^* is also a Hopf algebra in the category L^LyD(π). Then we establish the fundamental theorem of Hopf modules for H in the category L^LyD(π).