The spontaneous emission decay dynamics of a tripod configuration four-level atom driven by a single laser field is studied. Under different initial conditions, we discuss the effects of quantum interference and detuning of external driving field on atomic spontaneous emission properties. For the larger detuning, the interesting phenomena of the spectral line narrowing are found which stem from the contribution of external driving field.
We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission. A modified density of modes is introduced to calculate the spontaneous emission spectra in photonic crystal. Spectra in free space are also shown to compare with that in photonic crystal with different relative positions of the excited levels from upper band-edge frequency. It is found that the initial phase difference plays an important role in the quantum interference property between the two decay channels. For a zero initial phase, destructive property is presented in the spectra. With the increase of initial phase difference, quantum interference between the two decay channels from upper levels to ground level turns to be constructive. Furthermore, we give an interpretation for the property of these spectra.