In this paper, similarity symplectic geometry for curves is proposed and studied. Explicit expressions of the symplectic invariants, Frenet frame and Prenet formulae for curves in similarity symplectic geometry are obtained by using the equivariant moving frame method. The relationships between the Euclidean symplectic invariants, Frenet frame, Frenet formulae and the similarity symplectic invariants, Frenet frame, Frenet formulae for curves are established. Invariant curve flows in four-dimensional similarity symplectic geometry are also studied. It is shown that certain intrinsic invariant curve flows in four-dimensional similarity symplectic geometry are related to the integrable Burgers and matrix Burgers equations.
By using Xu's stable-range method,families of explicit exact solutions with multiple parameter functions for the(2+1)-dimensional breaking soliton and KadomtsevPetviashvili equations.These parameter functions make our solutions more applicable to related practical models and boundary value problems.