There are two kinds of piezoelectric pumps:check valve pumps and valve-less pumps.Whether to use a check valve or not depends upon the application occasion.To achieve large backpressure for higher flow rates,the pump with check valve is desirable.However,adding check valves implies more complex structure and higher probability of valve blocking,etc.In order to solve the problem,effective driving and transport mechanics with compact construction and reliable service are being sought.In this paper,using the second-order longitudinal vibration mode of a bar-shaped piezoelectric vibrator for driving fluid,a piezoelectric pump is successfully made.The proposed piezoelectric pump consists of coaxial cylindrical shells and a bar-shaped piezoelectric vibrator,which has a disk part and a cone part.The lead zirconium titanate ceramic rings fixed in the vibrator are polarized along the thickness direction.When the second-order longitudinal vibration of the vibrator along its axis is excited,the disk part of the vibrator changes periodically the volume of the chamber and the cone part acts as a pin valve,driving the fluid from the inlet port to the outlet port.Finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software ANSYS.Components of the piezoelectric pump were manufactured,assembled,and tested for flow rate and backpressure to validate the concepts of the proposed pump and confirm the simulation results of modal and harmonic analyses.The test results show that the performance of the proposed piezoelectric pump is about 910 mL/min in flow rate with a highest pressure level of 1.5 kPa under 400 V peak-to-peak voltage and 51.7 kHz operating frequency.It is confirmed that this bar-shaped piezoelectric transducer can be effectively applied in fluid transferring mechanism of pump through this research.
Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity.
A piezoelectric driving method for rover vehicles is proposed in this paper. Employing this method, a tracked vehicle driven by friction forces from a frame mounted with piezoelectric elements was developed. The vehicle is designed with no driver sprocket, no idler-wheel and no supporting bogie wheels, and the vehicle thus requires no lubrication and has potential application in planetary exploration. The frame consists of a pair of piezoelectric transducers. Each transducer comprises four annular parts jointed by beams adhered with piezoelectric ceramics. The tracks are set to the outer surface of the annular parts by means of track tension. Traveling rotating waves are generated by piezoelectric transducers in the annular parts, which generate microscopic elliptical motions at the interface of the tracks. The microscopic elliptical motions from the piezoelectric transducers drive the track vehicle to move. Finite elements analysis was carried out to verify the operation principle using commercial software ANSYS. Piezoelectric transducers were fabricated, assembled and tested to validate the concepts of the proposed rover vehicle and confirm the simulation results. A prototype vehicle with mass of 0.57 kg moves at a speed of 4.3 mm/s at a driving voltage of 250 V and operating frequency of 65.53 kHz.
JIN JiaMeiQIAN FuYANG YingZHANG JianHuiZHU KongJun