InGaN/GaN p-i-n solar cells, each with an undoped In0.12Ga0.88N absorption layer, are grown on c-plane sapphire substrates by metal-organic chemical vapor deposition. The effects of the thickness and dislocation density of the absorp- tion layer on the collection efficiency of InGaN-based solar cells are analyzed, and the experimental results demonstrate that the thickness of the InGaN layer and the dislocation density significantly affect the performance. An optimized InGaN- based solar cell with a peak external quantum efficiency of 57% at a wavelength of 371 nm is reported. The full width at half maximum of the rocking curve of the (0002) InGaN layer is 180 arcsec.
This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x- ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence t of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of-0.89 GPa.
We present the growth of CaN epilayer on Si (111) substrate with a single A1GaN interlayer sandwiched between the GaN epilayer and A1N buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an A1N buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.
In situ optical reflectivity measurements are employed to monitor the GaN epilayer growth process above a lowtemperature GaN buffer layer on a c-plane sapphire substrate by metalorganic chemical vapour deposition. It is found that the lateral growth of the GaN islands and their coalescence are promoted in the initial growth stage if optimized nitridation time and temperature are selected when the substrate is pre-exposed to ammonia. As confirmed by atomic force microscopy observations, the quality of the CaN epilayers is closely dependent on the surface morphology of the nitridated buffer layer, especially grain size and nucleation density.
This paper reports that Al1-xInxN epilayers were grown on GaN template by metalorganic chemical vapor deposition with an In content of 7%--20%. X-ray diffraction results indicate that all these Al1-xInxN epilayers have a relatively low density of threading dislocations. Rutherford backscattering/channeling measurements provide the exact compositional information and show that a gradual variation in composition of the Al1-xInxN epilayer happens along the growth direction. The experimental results of optical reflection clearly show the bandgap energies of Al1-xInxN epilayers. A bowing parameter of 6.5~eV is obtained from the compositional dependence of the energy gap. The cathodoluminescence peak energy of the Al1-xInxN epilayer is much lower than its bandgap, indicating a relatively large Stokes shift in the Al1-xInxN sample.
A violet laser diode (LD) structure is grown on a free-standing c-plane GaN substrate and 4 μm×800μm ridge waveguide LDs are fabricated. The electrical and the optical characteristics of LDs under different facet-coating and chip-mounting conditions are investigated under pulse mode operation. The active region temperatures of p-side up and p-side down mounted LDs are calculated with different injection currents. The calculated thermal resistances of p-side up and p-side down mounted LDs are 4.6 K/W and 3 K/W, respectively. The threshold current of the p-side down mounted LD is much lower than that of the p-side up mounted LD. The blue shift of the emission wavelength with increasing injection current is observed only for the LD with p-side down mounting configuration, due to the more efficient heat dissipation.
A method to calculate the reflectivity of the coated cavity facet was proposed, and the distribution of the optical power near the two coated cavity facets was calculated for GaN-based laser diodes. A new design method for reducing the optical power at the two cavity facets without changing the output power of laser diodes was discussed, which is helpful to optimize the cavity facet coating and raise the threshold current at which catastrophic optical damage occurs.
The influences of polarization and p-region doping concentration on the photocurrent response of Al0.4Ga0.6N/Al0.4Ga0.6N /Al0.65Ga0.35N p-i-n avalanche photodetector are studied in a wide range of reverse bias voltages. The simulation results indicate that the photocurrent under high inverse bias voltage decreases with the increase of polarization effect, but increases rapidly with the increase of effective doping concentration in p-type region. These phenomena are analyzed based on the calculations of the intensity and distribution of the electric field. A high p-region doping concentration in the p-i-n avalanche photodetector is detrimental polarization-induced electrostatic field. shown to be important for the efficient compensation for the
We have fabricated InGaN-based superluminescent diodes(SLDs)with one-sided oblique facet.The characteristics of the SLDs and laser diodes with the same cavity length(800 lm)were compared.The typical peak wavelength and the full width at half maximum of the spectrum in superluminescence regime are 445.3 and 7.7 nm for the SLDs with 800 lm cavity length.The characteristics of the SLDs with different cavity length were also demonstrated in a comparative way.It is found that the gain of the InGaN multi-quantum wells in blue spectral range is a linear function of the current density below gain saturation region.The lasing threshold current turns out to be higher for the shorter SLD(S-SLD)(400 lm),but the output light intensity of the longer SLD(800 lm)is higher than that of the S-SLD under the same current density.The gain saturation phenomenon was observed in S-SLD when it was biased at a current density larger than 27.5 kA/cm2.The increase of junction temperature was identified as the main reason for gain saturation through spectra analysis.