The second(O2)observational campaign of gravitational waves(GWs)organized by the LIGO/Virgo Collaborations has led to several breakthroughs such as the detection of GW signals from merger systems involving black holes or neutrons stars.During O2,14 GW alerts were sent to the astronomical community with sky regions mostly covering over hundreds of square degrees.Among them,six were finally confirmed as real astrophysical events.Since 2013,a new set of ground-based robotic telescopes called Ground-based Wide Angle Camera system(GWAC)project and its pathfinder mini-GWAC has been developed to contribute to the various challenges of multi-messenger and time domain astronomy.The GWAC system is built up in the framework of the ground-segment system of the SVOM mission that will be devoted to the study of the multi-wavelength transient sky in the next decade.During O2,only the mini-GWAC telescope network was fully operational.Due to the wide field of view and fast automatic follow-up capabilities of the mini-GWAC telescopes,they were adept to efficiently cover the sky localization areas of GW event candidates.In this paper,we present the mini-GWAC pipeline we have set up to respond to GW alerts and we report our optical follow-up observations of eight GW alerts detected during the O2 run.Our observations provided the largest coverage of the GW localization areas with a short latency made by any optical facility.We found tens of optical transient candidates in our images,but none of those could be securely associated with any confirmed black hole-black hole merger event.Based on this first experience and the near future technical improvements of our network system,we will be more competitive in detecting the optical counterparts from some GW events that will be identified during the upcoming O3 run,especially those emerging from binary neutron star mergers.
We report the optical observations of GRB 121011 A by the 0.8m TNT facility at Xinglong observatory, China. The light curve of the optical afterglow shows a smooth and featureless bump during the epoch of;30 s and;000 s with a rising index of 1.57 ± 0.28 before the break time of 539 ± 44 s, and a decaying index of about 1.29 ± 0.07 up to the end of our observations. Moreover, the X-ray light curve decays in a single power-law with a slope of about 1.51 ± 0.03 observed by XRT onboard Swift from 100 s to about 10 000 s after the burst trigger. The featureless optical light curve could be understood as an onset process under the external-shock model. The typical frequency has been below or near the optical one before the deceleration time, and the cooling frequency is located between the optical and X-ray wavelengths. The external medium density has a transition from a mixed stage of ISM and wind-type medium before the peak time to the ISM at the later phase. The joint-analysis of X-ray and optical light curves shows that the emissions from both frequencies are consistent with the prediction of the standard afterglow model without any energy injections, indicating that the central engine has stopped its activity and does not restart anymore after the prompt phase.
Li-Ping XinJian-Yan WeiYu-Lei QiuJin-Song DengJing WangXu-Hui Han