In the paper, the full length cDNA of RsMF2 gene, homologous with the BcMF2 gene encoding pollen-specificpolygalacturonase of Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis Makino) was cloned from Raphanussativus L. cv. Yuanbai by PCR, with a pair of primer designed according to the coding sequence of BcMF2. The largestopening reading frame of RsMF2 gene is 1 266 bp in length and encodes a protein of 421 amino acids with a predictedmolecular mass of 43.9 kDa. Sequence analysis revealed that it has three potential N-glycosylation sites and onepolygalacturonase active position (RVTCGPGHGLSVGS). And the first 32 amino acids of the predicted RsMF2 proteinform a N-terminal hydrophobic domain which displays the properties of a signal peptide. The predicted secondarystructure composition for the protein has 6.9% helix, 42.0% sheet and 51.1% loop. Four domains which are highly conservedin the whole plant and fungal PGs is present in RsMF2. Phylogenetic analysis showed that RsMF2 falls into the categoryof clade-C, which includes PGs related to pollen. These results indicate that RsMF2 may act as polygalacturonase relatedto pollen development.
An anti-gene CYP86MF was introduced into hypocotyls of broccoli (Brassica oleracea L.var. italica Plenck) with Agrobacterium tumefaciens, and the transgenic plants were obtained by kanamycin selection. The results of PCR, Southern blot and Northern blot indicated that the anti-CYP86MF has been integrated into chromosome of the transgenic plant. And also, plants with hypogenetic stamina or ungerminated pollen were observed. The transgenic male sterility plant could fructify via artificial pollination with normal pollen. Thus it was proved that the pistil of male sterility plant was normally developed, and the sterility originated from anti-CYP86MF.