您的位置: 专家智库 > >

国家自然科学基金(11101114)

作品数:6 被引量:5H指数:1
相关作者:夏传笑曾林蕊张雨章婷婷邓文丽更多>>
相关机构:华东师范大学四川大学江西师范大学更多>>
发文基金:国家自然科学基金国家教育部博士点基金更多>>
相关领域:理学更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 6篇理学

主题

  • 2篇英文
  • 1篇迭代
  • 1篇迭代算法
  • 1篇右删失数据
  • 1篇删失数据
  • 1篇强相合
  • 1篇强相合性
  • 1篇相合性
  • 1篇NEWTON
  • 1篇NUMBER
  • 1篇PARAME...
  • 1篇PARAME...
  • 1篇PARTS
  • 1篇PROFIL...
  • 1篇SELECT...
  • 1篇SEMI
  • 1篇TWO-LE...
  • 1篇VALIDA...
  • 1篇VARYIN...
  • 1篇B-样条

机构

  • 2篇华东师范大学
  • 1篇四川大学
  • 1篇江西师范大学

作者

  • 1篇张雨
  • 1篇曾林蕊
  • 1篇张日权
  • 1篇邓文丽
  • 1篇夏传笑
  • 1篇章婷婷

传媒

  • 2篇应用概率统计
  • 2篇Scienc...
  • 1篇Acta M...
  • 1篇Acta M...

年份

  • 3篇2014
  • 2篇2013
  • 1篇2012
6 条 记 录,以下是 1-6
排序方式:
Testing for the parametric parts in a single-index varying-coefficient model
2012年
Single-index varying-coefficient models (SIVCMs) are very useful in multivariate nonparametric regression.However,there has less attention focused on inferences of the SIVCMs.Using the local linear method,we propose estimates of the unknowns in the SIVCMs.In this article,our main purpose is to examine whether the generalized likelihood ratio (GLR) tests are applicable to the testing problem for the index parameter in the SIVCMs.Under the null hypothesis our proposed GLR statistic follows the chi-squared distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters or functions,which is called as Wilks' phenomenon (see Fan et al.,2001).A simulation study is conducted to illustrate the proposed methodology.
HUANG ZhenShengZHANG RiQuan
Estimation of Semi-Varying Coefficient Model with Surrogate Data and Validation Sampling被引量:1
2013年
In this paper, we investigate the estimation of semi-varying coefficient models when the nonlinear covariates are prone to measurement error. With the help of validation sampling, we propose two estimators of the parameter and the coefficient functions by combining dimension reduction and the profile likelihood methods without any error structure equation specification or error distribution assumption. We establish the asymptotic normality of proposed estimators for both the parametric and nonparametric parts and show that the proposed estimators achieves the best convergence rate. Data-driven bandwidth selection methods are also discussed. Simulations are conducted to evaluate the finite sample property of the estimation methods proposed.
Ya-zhao LRi-quan ZHANGZhen-sheng HUANG
Nonparametric Regression with Interval-Censored Data被引量:1
2014年
In many medical studies,the prevalence of interval censored data is increasing due to periodic monitoring of the progression status of a disease.In nonparametric regression model,when the response variable is subjected to interval-censoring,the regression function could not be estimated by traditional methods directly.With the censored data,we construct a new response variable which has the same conditional expectation as the original one.Based on the new variable,we get a nearest neighbor estimator of the regression function.It is established that the estimator has strong consistency and asymptotic normality.The relevant simulation reports are given.
Wen Li DENGZu Kang ZHENGRi Quan ZHANG
变系数单指标模型的B-样条估计(英文)被引量:2
2013年
变系数单指标模型结合和单指标和变系数模型的优点,在许多领域中有着重要的应用.本文我们基于B-样条逼近,提出了两种估计方法:第一种方法是利用Newton-Raphson迭代方法同时获得参数和非参数部分的估计;第二个方法是剖面方法获得了相应的估计.当模型中有许多参数时,我们建议使用第二种估计方法,而当参数个数较少时采用第一种方法更方便.两个模拟例子用来验证本文提出的估计方法.
张雨夏传笑曾林蕊
关键词:B-样条
右删失数据下加速失效模型的估计问题(英文)被引量:1
2014年
加速失效模型合理地描述了协变量对失效时间的影响,但删失数据的存在对该半参数回归模型的分析带来了很大的挑战.在现有的研究中,删失数据的加速失效模型研究大多牵涉到复杂的计算.为了解决这个问题,本文采用无偏转换和K-M估计相结合的方法进行分析.对删失的响应变量构造无偏转换量,利用最小二乘方法可以得到回归系数的估计,可以证明所得到的估计具有相合性和渐近正态性.在此基础上,利用K-M估计的做法,可以得到随机误差项的分布函数的估计,文中证明了该估计具有强相合性.模拟计算的结果进一步说明了本文所用方法的可行性和估计的有效性.
邓文丽章婷婷张日权
关键词:强相合性
Hierarchically penalized additive hazards model with diverging number of parameters
2014年
In many applications,covariates can be naturally grouped.For example,for gene expression data analysis,genes belonging to the same pathway might be viewed as a group.This paper studies variable selection problem for censored survival data in the additive hazards model when covariates are grouped.A hierarchical regularization method is proposed to simultaneously estimate parameters and select important variables at both the group level and the within-group level.For the situations in which the number of parameters tends to∞as the sample size increases,we establish an oracle property and asymptotic normality property of the proposed estimators.Numerical results indicate that the hierarchically penalized method performs better than some existing methods such as lasso,smoothly clipped absolute deviation(SCAD)and adaptive lasso.
LIU JiCaiZHANG RiQuanZHAO WeiHua
共1页<1>
聚类工具0