您的位置: 专家智库 > >

国家自然科学基金(21176073)

作品数:11 被引量:20H指数:3
相关作者:颜学峰童楚东张青姜庆超胡志敏更多>>
相关机构:华东理工大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家教育部博士点基金更多>>
相关领域:自动化与计算机技术化学工程电子电信机械工程更多>>

文献类型

  • 11篇中文期刊文章

领域

  • 10篇自动化与计算...
  • 2篇化学工程
  • 1篇石油与天然气...
  • 1篇机械工程
  • 1篇电子电信

主题

  • 3篇子群
  • 3篇粒子群
  • 3篇BASED_...
  • 2篇群算法
  • 2篇主元
  • 2篇主元分析
  • 2篇粒子群优化
  • 2篇化工过程
  • 2篇OPTIMI...
  • 2篇APPLIC...
  • 2篇INTEGR...
  • 2篇ITS
  • 2篇CO-EVO...
  • 1篇单调性
  • 1篇动态优化
  • 1篇独立元分析
  • 1篇多样性
  • 1篇压力容器
  • 1篇压力容器设计
  • 1篇优化算法

机构

  • 6篇华东理工大学

作者

  • 6篇颜学峰
  • 1篇王应虎
  • 1篇范勤勤
  • 1篇胡志敏
  • 1篇姜庆超
  • 1篇童楚东
  • 1篇张青

传媒

  • 3篇Journa...
  • 2篇计算机与应用...
  • 1篇控制理论与应...
  • 1篇化工自动化及...
  • 1篇石油化工高等...
  • 1篇华东理工大学...
  • 1篇Journa...
  • 1篇Journa...

年份

  • 1篇2017
  • 1篇2016
  • 3篇2015
  • 1篇2014
  • 2篇2013
  • 3篇2012
11 条 记 录,以下是 1-10
排序方式:
Fault diagnosis and process monitoring using a statistical pattern framework based on a self-organizing map被引量:2
2015年
A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.
宋羽姜庆超颜学峰
基于即时学习的集成神经网络及其干点预测被引量:5
2016年
针对单个神经网络泛化能力差、对不同样本预测精度波动大的问题,提出了一种基于即时学习集成神经网络方法。首先,基于训练样本,建立多个不同的神经网络模型。其次,根据即时学习的思想,在对样本进行预测时,在训练样本中寻找与预测样本最接近的若干邻近样本,根据各网络对邻近样本的训练误差,即时形成各神经网络的集成权重,实时构造集成神经网络模型,对预测样本进行预测。最后,将该方法应用于初顶石脑油干点的预测,相比于文献中提出的方法,得到了更好的预测结果 。
吴朔枫颜学峰
关键词:神经网络干点
PCA-ICA化工过程监控中的PCA白化性能分析
2012年
主元分析是基于独立元分析过程监控中一种重要而且常用的白化方法,可以有效地降低监控对象的维数。其基于正常样本数据,根据主元方差贡献率选取主元,保留正常样本中的大部分方差信息,消除噪声。在PCA模型中,每个主元的T2统计量表征着样本数据沿该主元方向的变异程度。通过对故障样本数据每个主元的T2统计量分析,发现某些故障信息投影在方差较小且被舍弃的主元上,从而造成故障信息的损失,进而影响了ICA的监控性能,造成故障的漏检和故障源的误识别。最后,采用一个简易系统和TE过程,验证了PCA白化过程对ICA监控性能的影响。
姜庆超颜学峰
关键词:主元分析独立元分析
A Hybrid Differential Evolution Algorithm Integrated with Particle Swarm Optimization
2014年
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.
范勤勤颜学峰
关键词:SELF-ADAPTIVECO-EVOLUTION
融合概率分布和单调性的支持向量回归算法被引量:1
2017年
传统支持向量回归是单纯基于样本数据的输入输出值建模,仅使用样本数据信息,未充分利用其他已知信息,模型泛化能力不强.为了进一步提高其性能,提出一种融合概率分布和单调性先验知识的支持向量回归算法.首先将对偶二次规划问题简化为线性规划问题,在求解时,加入与拉格朗日乘子相关的单调性约束条件;通过粒子群算法优化惩罚参数和核参数,优化目标包括四阶矩估计表示的输出样本概率分布特性.实验结果表明,融合这两部分信息的模型,能使预测值较好地满足训练样本隐含的概率分布特性及已知的单调性,既提高了预测精度,又增加了模型的可解释性.
张青颜学峰
关键词:支持向量回归概率分布单调性粒子群优化
多样性分布参数的粒子群算法及其在过程动态优化中的应用
2015年
提出一种多样性分布参数的粒子群算法(DDPPSO)。在DDPPSO算法中,每个粒子在初始化时拥有各自的惯性权重和加速因子。在迭代时由每个粒子的寻优性能决定其参数的权重,进而计算参数群体的加权平均值。根据加权平均值与自适应方差,通过正态分布产生下一代参数个体,从而实现参数群体的多样性分布,为算法的寻优提供实时最佳的控制参数。标准测试函数实验表明,在寻优性能上DDPPSO算法较新改进的PSO算法有较大提高。最后,将DDPPSO算法应用于Park-Ramirez生物反应器的动态优化,获得满意的结果。
王应虎范勤勤颜学峰
关键词:粒子群算法动态优化生物反应器
Statistical process monitoring based on improved principal component analysis and its application to chemical processes被引量:2
2013年
In this paper, a novel criterion is proposed to determine the retained principal components (PCs) that capture the dominant variability of online monitored data. The variations of PCs were calculated according to their mean and covariance changes between the modeling sample and the online monitored data. The retained PCs containing dominant variations were selected and defined as correlative PCs (CPCs). The new Hotelling's T2 statistic based on CPCs was then employed to monitor the process. Case studies on the simulated continuous stirred tank reactor and the well-known Tennessee Eastman process demonstrated the feasibility and effectiveness of the CPCs-based fault detection methods.
Chu-dong TONGXue-feng YANYu-xin MA
Chemical process dynamic optimization based on hybrid differential evolution algorithm integrated with Alopex被引量:5
2013年
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
范勤勤吕照民颜学峰郭美锦
Harmony search algorithm with differential evolution based control parameter co-evolution and its application in chemical process dynamic optimization被引量:1
2015年
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
范勤勤王循华颜学峰
关键词:CO-EVOLUTION
基于PCA与OLPP混合方法的化工过程故障检测被引量:4
2012年
对于复杂的工业过程,采集到的过程数据能反映出生产过程的内在变化和运行状况。本文提出一种新的多变量统计过程监测策略,数据建模过程包含主元分析(Principal Component Aanlysis,PCA)与正交局部保持投影(Orthogonal Locality PreservingProjection,OLPP)两步。首先利用PCA在不丢失任何信息的前提下将原始数据旋转成不相关的潜变量,然后再作OLPP以提取能表征过程正常数据内在局部近邻结构的特征用于故障检测。利用T^2和SPE(或Q)统计量以及核密度估计方法确定的控制限进行化工过程的在线监测,TE过程仿真实验验证了该混合方法的有效性和优越性。
童楚东颜学峰
关键词:故障检测主元分析TE过程
共2页<12>
聚类工具0