A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.
In this paper, a novel criterion is proposed to determine the retained principal components (PCs) that capture the dominant variability of online monitored data. The variations of PCs were calculated according to their mean and covariance changes between the modeling sample and the online monitored data. The retained PCs containing dominant variations were selected and defined as correlative PCs (CPCs). The new Hotelling's T2 statistic based on CPCs was then employed to monitor the process. Case studies on the simulated continuous stirred tank reactor and the well-known Tennessee Eastman process demonstrated the feasibility and effectiveness of the CPCs-based fault detection methods.
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.