Ni-39.3%Mo, Ni-45%Mo hypoeutectic alloys and Ni-47.7%Mo eutectic alloy have been rapidly solidified with different droplet sizes by containerless processing in a drop tube. For Ni-39.3%Mo hypoeutectic alloy, which corresponds to the maximum solid solubility of nickel phase, the solidification microstructure is characterized by nickel dendrite plus (Ni+NiMo) eutectic struc-ture. The undercooling of this alloy up to 182 K has been realized in the experiments. With an in-crease in undercooling, the dendritic microstructure is refined. The microstructural evolution of primary Ni phase in Ni-45%Mo hypoeutectic alloy evolves from remelted dendrite to equiaxed grains, whereas Ni-47.7%Mo eutectic alloy exhibits a structural transition from lamellar eutectic to anomalous eutectic. Theoretical analyses indicate that, for Ni-39.3%Mo, Ni-45%Mo and Ni-47.7%Mo alloys, the nickel phase shows a transition from solutal-diffusion-controlled growth to thermal-diffusion-controlled growth at undercoolings of 66.6, 81.9 and 85.0 K. The critical transition temperature decreases with a reduction in the nickel content.
The high undercooling and rapid solidification of Ni-10%Cu-10%Fe-10%Co quaternary alloy were achieved by electromagnetic levitation and glass fluxing techniques. The maximum undercooling of 276 K (0.16TL) was obtained in the experiments. All the solidified samples are determined to be α-Ni single-phase solid solutions by DSC thermal analysis and X-ray diffraction analysis. The microstructure of the α-Ni solid solution phase transfers from dendrite to equiaxed grain with an increase in undercooling, accompanied by the grain refinement effect. When the undercooling is very large, the solute trapping effect becomes quite significant and the microseg-regation is suppressed. The experimental measure-ment of α-Ni dendrite growth velocity indicates that it increases with undercooling according to the relation, V=8×10?2×?T1.2.
The surface tension and specific heat of Ni-5%Sn alloy melt were measured by the oscillating drop method and the drop calorimetric method using electromagnetic levitation, respectively. The temperature coefficient of surface tension is 6.43×10-4 N·m?1K?1 within the temperature regime of 1464-1931 K. The enthalpy change was measured in the temperature range from 1461 to 1986 K, and the average specific heat was obtained as 43.03 J·mol?1K?1. Some other thermophysical properties, such as viscosity, solute dif-fusion coefficient, density, thermal diffusivity and thermal conductivity of this alloy melt, were derived based on the experimentally measured surface tension and specific heat. Using these thermophysical parameters, the relation between solute trapping and under-cooling in rapidly solidified α-Ni was calculated, and the theoretical prediction shows a good agreement with experimental data.
Containerless treatment of Bi-58.5at%Ga hypermonotectic alloy is successfully performed with acous-tic levitation technique. Under acoustic levitation condition,the second phase (Ga) distributes almost homogeneously in solidification sample,opposite to macrosegregation in solidification sample under conventional condition. Stokes motion of the second liquid droplet (Ga) is significantly restrained un-der acoustic levitation condition. The analyses indicate that the melt vibration in the gravity direction forced by acoustic field can induce steady flow around the second liquid droplet,which influences droplet shape during its moving upward and consequently restrains Stokes motion velocity of the second liquid droplet.
Fe-48.8% Sn monotectic, Fe-40% Sn hypomonotectic and Fe-58% Sn hypermonotectic alloys have been rapidly solidified during free fall processing in drop tube. For droplets of 100–1000 μm, the maximum undercooling for Fe-48.8% Sn, Fe-40% Sn and Fe-58% Sn alloys is 270, 282 and 288 K respectively. For Fe-48.8% Sn monotectic alloy, a homogeneously dispersed microstructure can be obtained when the droplet diameter is small, and the Marangoni migration velocity Vm is 37 times as fast as Stokes velocity Vs when the dispersion sphere radius is 6 μm and undercooling is 30 K. For Fe-40% Sn hypomonotectic alloy, the microstructure undergoes a transition from columnar α-Fe dendrites distributed in Sn-rich matrix to α-Fe particles. The growth velocity of α-Fe dendrite changes from 0.45 to 4.65 m/s when the droplet diameter varies from 1000 to 100 μm. For Fe-58.8% Sn hypermonotectic alloy, the grain size of primary α-Fe dendrites decreases remarkably when undercooling increases. Keywords monotectic solidification - phase separation - undercooling - containerless processing