An environmentally friendly approach is presented to synthesize sulfonated reduced graphene oxide (S-rGO) by using L-ascorbic acid (L-AA) and aryl diazonium salt of sulfanilic acid. The preparation conditions have been optimized in order to obtain isolated and conductive S-rGO, and the products have been characterized by Ultraviolet-Visible spectroscopy, Fourier transformed infrared spectroscopy, Raman, X-ray photoelectron spectroscopy and X-ray powder diffraction and electrochemical methods. The results show that the S-rGO sheets possess excellent water-solubility and high electrical conductivity, which implies that the oxygen-containing functional groups have been removed and conjugated sp2 network has been restored. What's more, the electrochemical measurements reveal that the capacitive performance of the S-rGO has been improved compared with the graphene oxide (GO) and the reduced graphene oxide (rGO, reduced by L-AA). The optimum S-rGO exhibits a specific capacitance of 205 F·g^-1 and good cycling stability (3.9% decreasing after 10000 cycles), which are better than those for graphene oxide (109 F·g^-1 and decreasing 6.6% after 10000 cycles) and rGO (139 F·g^-1 and decreasing ll.3% after 10000 cycling). This approach proves a new route to improve the capacitive properties of rGO.