A biosensor device, built from graphene nanoribbons (GNRs) with nanopores, was designed and studied by first- principles quantum transport simulation. We have demonstrated the intrinsic transport properties of the device and the effect of different nucleobases on device properties when they are located in the nanopores of GNRs. It was found that the device's current changes remarkably with the species of nucleobases, which originates from their different chemical compositions and coupling strengths with GNRs. In addition, our first-principles results clearly reveal that the distinguished ability of a device's current depends on the position of the pore to some extent. These results may present a new way to read off the nucleobases sequence of a single-stranded DNA (ssDNA) molecule by such GNRs-based device with designed nanopores
Based on the density functional theory,we calculate the dependence of the band structures of bilayer ziezaff-edzed grapnene nanonooons(BZGNRs)upon ribbon width,interlayer distance and stacking styles.Unlike monolayer zigzag GNR,whose energy gap is always zero under different ribbon widths,the gap of BZGNR varies greathy with the ribbon width or the interlayer distance.The greatest gaps for AA-stacking and AB-stacking BZGNRs are about 0.22eV and 0.12eV,respectively,which implies that gap-tuning of AA-BZGNRs is more effective than that of AB-BZGNRs.These results present a way to tune the band structures of BZGNRs and also provide theoretical guidance for the fabrication of GNR-based piezoelectric devices.