To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).
Qiu-xiang YIJing-feng HUANGFu-min WANGXiu-zhen WANG
Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs.
YANG Xiao-huaHUANG Jing-fengWANG Jian-wenWANG Xiu-zhenLIU Zhan-yu
Hyperspectral reflectance (350-2500 nm) measurements were made over two experimental rice fields containing two cultivars treated with three levels of nitrogen application.Four different transformations of the reflectance data were analyzed for their capability to predict rice biophysical parameters,comprising leaf area index (LAI;m-2 green leaf area m-2 soil) and green leaf chlorophyll density (GLCD;mg chlorophyll m 2 soil),using stepwise multiple regression (SMR) models and support vector machines (SVMs).Four transformations of the rice canopy data were made,comprising reflectances (R),first-order derivative reflectances (D1),second-order derivative reflectances (D2),and logarithm transformation of reflectances (LOG).The polynomial kernel (POLY) of the SVM using R was the best model to predict rice LAI,with a root mean square error (RMSE) of 1.0496 LAI units.The analysis of variance kernel of SVM using LOG was the best model to predict rice GLCD,with an RMSE of 523.0741 mg m-2.The SVM approach was not only superior to SMR models for predicting the rice biophysical parameters,but also provided a useful exploratory and predictive tool for analyzing different transformations of reflectance data.
YANG XiaoHuaHUANG JingFengWU YaoPingWANG JianWenWANG PeiWANG XiaoMingAlfredo R. HUETE