Soil in greenhouses is likely to suffer a gradual decline in aggregate stability. Determination of the effects of different fertiliser practices on soil aggregate stability is important for taking advantage of solar greenhouses. Soil aggregate stability and iron (Fe) and aluminium (A1) oxide contents were investigated in a 26-year long-term fertilisation experiment in greenhouse in Shenyang, China, under eight fertiliser treatments: manure (M), fertiliser N (FN), fertiliser N with manure (MN), fertiliser P (FP), fertiliser P with manure (MP), fertiliser NP (FNP), fertiliser NP with manure (MNP), and control without any fertiliser (CK). A wet sieving method was used to determine aggregate size distribution and water-stable aggregates (WSA), mean weight diameter and geometric mean diameter as the indices of soil aggregate stability. Different fertiliser treatments had a statistically significant influence on aggregate stability and Fe and A1 oxide contents. Long-term application of inorganic fertilisers had no obvious effects on the mass proportion of aggregates. By contrast, manure application significantly increased the mass proportion of macroaggregates at the expense of microaggregates. All treatments, with the exception of FNP, significantly increased the stability of macroaggregates but decreased that of microaggregates when compared with CK. Aggregation under MP and MN was better than that under M and MNP; however, no significant differences were found among inorganic fertiliser treatments (i.e., FN, FP, and FNP). A positive relation was found between pyrophosphate-extractable Fe and WSA (r=0.269), but no significant relations were observed between other Fe and Al oxides and aggregate stability.
Fertilisers significantly affect crop production and crop biomass inputs to soil organic carbon(SOC). However, the long-term effects of fertilisers on C associated with aggregates are not yet fully understood. Based on soil aggregate and SOC fractionation analysis, this study investigated the long-term effects of organic manure and inorganic fertilisers on the accumulation and change in SOC and its fractions, including the C concentrations of free light fraction, intra-aggregate particulate organic matter(POM) and intra-aggregate mineral-associated organic matter(MOM). Long-term manure applications improved SOC and increased the concentrations of some C fractions. Manure also accelerated the decomposition of coarse POM(cPOM) into fine POM(fPOM) and facilitated the transformation of fPOM encrustation into intra-microaggregate POM within macroaggregates. However, the application of inorganic fertilisers was detrimental to the formation of fPOM and to the subsequent encrustation of fPOM with clay particles, thus inhibiting the formation of stable microaggregates within macroaggregates. No significant differences were observed among the inorganic fertiliser treatments in terms of C concentrations of MOM, intra-microaggregate MOM within macroaggregate(imMMOM) and intra-microaggregate MOM(imMOM). However, the long-term application of manure resulted in large increases in C concentrations of MOM(36.35%), imMMOM(456.31%) and imMOM(19.33%) compared with control treatment.