To identify the desired hypertherrnophilic variants within a mutant esterase library for the resolution of (R, S)-2- octanol acetate, a simple, reliable, and versatile method was developed in this study. We built a screening strategy including two steps, first we selected agar plate with substrate to screen the enzymatic activity; secondly we used a pH indicator to screen the enantioselectivity. This method could rapidly detect favorable mutants with high activity and enantioselectivity. A total of 96. 2% of tedious screening work can be precluded using this screening strategy. It is an effective screening for alkyl ester and can be applied to relative screening researches. The four improved mutants were screened from the mutant esterase library. Their enantioselectivities, activities, and structures were investigated at different temperatures.
ZHANG Gui-rong GAO Ren-jun ZHANG Ai-jun RAO Lang CAO Shu-gui
Carboxyltransferase domain(CT) of acetyl-coenzyme A carboxylase(ACCase, EC 6.4.1.2) from a family of Poaceae is an important target of commercial herbicide APPs for controlling grass weed growth. As the abuse of APPs herbicides, the resistant ACCase due to the mutation of a single residue(Ile→Leu), which is located in CT active site, is emergent in many populations and species of Poaceae. So it is urgent to understand the resistant mechanism so as to design new effect herbicides. Herein lies the complex of CT dimmer from Lolium rigidum and herbicide haloxyfop successfully constructed for wild type enzyme and Ile/Leu mutant, respectively, providing a basis for explaining the resistance from microscopic structure. Moreover, the binding free energy difference between wild type and mutant enzymes was predicted in good agreement with the known observation, and the various contributions to it were analyzed, by Molecular mechanics-Poisson-Boltzmann surface area(MM-PBSA) method. The results indicate the van der Waals interaction difference between the protein and inhibitor, -22.94 kJ/mol of CT wild type lower than that of mutant, is the major reason for resistance. Structure analysis further suggests that van der Waals interaction difference is originated from the steric hindrance between the side chain of mutated residue Leu and the chiral methyl group of haloxyfop. All these findings enhance the understanding of resistant mechanism of ACCase to herbicide by Ile/Leu mutation and provide an important clue for the rational design of high effective herbicides.
TAO Jin ZHAO Bo TIAN Xue-mei ZHENG Liang-yu CAO Shu-gui
Introduction Nerve growth factor (NGF) was first discovered and purified by Rita Levi-Montalcini and Stanley Cohen in the 1950s. It represents the first cellular growth factor ever discovered and involved in the gl-owth ,survival, and differentiation of specific nerve cell populations. Although animal tests and trials indicate that rhNGF could be ment for diabetic and HIV-related phase- Ⅱ clinical an effective treatneuropathies , a large-scale phase-Ⅲ clinical trial has failed to give similar result. NGF isolated from the mouse submaxillary gland has been widely used clinically in China for the treatment of peripheral neuropathy,
The entire gene of carboxyltransferase(CT) domain of acetyl-CoA carboxylase(ACCase) from Chinese Spring wheat(CSW) plastid was cloned firstly, and the 2.3 kb gene was inserted into PET28a^+ vector and expressed in E. coil in a soluble state. The (His)6 fusion protein was identified by SDS-PAGE and Western blot. The recombinant protein was purified by affinity chromatography, and the calculated molecular mass(Mr) was 88000. The results of the sequence analysis indicate that the cloned gene(GeneBank accession No. EU124675) was a supplement and revision of the reported ACCase CT partial cDNA from Chinese Spring wheat plastid. The recombinant protein will be significant for us to investigate the recognizing mechanism between ACCase and herbicides, and further to screen new herbicides.
WANG Rui-jianYANG Xue-yingZHENG Liang-yuYANG YeGAO GuiCAO Shu-gui
Acetyl-CoA carboxylase(ACCase) is a crucial enzyme in fatty acid synthesis, by regulating the first committed step in the process. Therefore, it is a potential target for the development of new compounds against obesity or as herbicides. The cDNA encoding yeast ACCase CT domains(YCTs) from Saccharvmyces cerevisiae was amplified by RT-PCR and inserted into the vector PET28a(+) for bacterial expression of YCT fused to N-terminal His-tag(YCT-his6). YCTs-his6 was expressed in Escherichia coli BL21(DE3) PLys as inclusion bodies, which was solubilized in 8 mol/L urea. Ni-agarose chromatography was used to purify the inclusion bodies under denaturing condition. Correct refolding was achieved via systematic dialysis to remove the denaturant gently in the presence of 0.5 mmol/L Triton X-100. The low concentration Triton X-100 was included in the refolding buffer to increase the solubilization and enhance dimeric formation of refolding proteins. The activity of the refolded YCT-his6 was 1.2 U/rag as measured in a spectrophotometric assay using malonyl-CoA as the substrate. To our knowledge, it is the first time that the bioactive YCT-his6 has been expressed successfully in E. coli and isolated from their inclusion bodies.
YANG Xue-ying TAO Jin ZHENG Liang-yu WANG Rui-jian ZHAO Ke CAO Shu-gui