Reactive nitrogen oxygen species(RNOS) implicate damage in biological systems,especially leading to inflammation,neurodegenerative and cardiovascular diseases,and cancer by altering the functions of biomolecules through the N-nitrosation and N-nitration reactions.The mechanisms of N-nitrosation and N-nitration reactions of ammonia and dimethylamine by RNOS,i.e.,N2O3,N2O4,N2O5 and ONOOH,were investigated at the CBS-QB3 level of theory.The computational results indicate that the N-nitrosation reaction prefers a concerted mechanism,in which a H-abstraction and ON-addition occur simultaneously,whereas a stepwise mechanism(also called a free radical mechanism) is more favorable for most nitrating agents in the N-nitration reaction,where NO2 first abstracts a hydrogen atom from the nitrogen of amines and then the induced intermediate reacts with NO2 once more to form the nitration products.However,the concerted pathway is still a feasible process for some nitrating agents such as N2O5.In addition,the relationship between the structures of different RNOS and their nitrosating or nitrating abilities was also investigated.
The conversion of peroxynitrite (ONOO-) to nitrate (NO3-) mediated by peroxynitrous acid (ONOOH) has been investigated at the CCSD/6-311G(d)//B3LYP/6-31 1+G(d,p) level. Two kinds of pathways for the title reaction were found. The results show that the energy barrier of isomerization through pathway 1 is around 25 kcal/mol in the gas phase. This value is significantly lower than that of isomerization without any catalysts. Thus, it indicates that ONOOH definitely makes the conversion from ONOO- to NO3- feasible. Although pathway 2 does not decrease the energy barrier of this isomerization, peroxynitric acid (O2NOOH) was obtained; moreover, this is a new pathway for this formation. In view of the results that peroxynitrate anion can decompose into nitrite and dioxygen, we conclude that our results are consistent with the experimental observation that nitrate, nitrite, and dioxygen are the main final products of the decay of peroxynitrite around pH 7.