We derive a new method for a coupled nonlinear Schr/Sdinger system by using the square of first-order Fourier spectral differentiation matrix D1 instead of traditional second-order Fourier spectral differentiation matrix D2 to approximate the second derivative. We prove the proposed method preserves the charge and energy conservation laws exactly. In numerical tests, we display the accuracy of numerical solution and the role of the nonlinear coupling parameter in cases of soliton collisions. Numerical experiments also exhibit the excellent performance of the method in preserving the charge and energy conservation laws. These numerical results verify that the proposed method is both a charge-preserving and an energy-preserving algorithm.
We propose a new scheme for simulation of a high-order nonlinear Schrodinger equation with a trapped term by using the mid-point rule and Fourier pseudospectral method to approximate time and space derivatives, respectively. The method is proved to be both charge- and energy-conserved. Various numerical experiments for the equation in different cases are conducted. From the numerical evidence, we see the present method provides an accurate solution and conserves the discrete charge and energy invariants to machine accuracy which are consistent with the theoretical analysis.
Local structure-preserving algorithms including multi-symplectic, local energy- and momentum-preserving schemes are proposed for the generalized Rosenau-RLW-KdV equation based on the multi-symplectic Hamiltonian formula of the equation. Each of the present algorithms holds a discrete conservation law in any time-space region. For the original problem subjected to appropriate boundary conditions, these algorithms will be globally conservative. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results show that the proposed algorithms have satisfactory performance in providing an accurate solution and preserving the discrete invariants.
A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.