Dense ceramic membranes with protonic and electronic conductivity have attracted considerable interest in recent years.In this paper,the powders of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) were synthesized via the liquid citrate method,and the membranes of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) were prepared by pressing followed by sintering.X-ray diffraction(XRD) was used to characterize the phase structure of both the powder and sintered membrane.The microstructure of the sintered membranes was studied by scann...
A novel core–shell TiO2@ZnIn2S4composite has been synthesized successfully by a simple and flexible hydrothermal route using TiO2as precursors.The as-synthesized samples were characterized by X-ray diffraction,UV–vis diffuse reflectance spectra and transmission electron microscopy.The photocatalytic properties of samples were tested by degradation of aqueous methylene blue(MB)under visible light irradiation.It was found that the as-synthesized TiO2@ZnIn2S4photocatalyst was more effcient than TiO2and ZnIn2S4in the photocatalytic degradation of MB.Moreover,TEM images confrmed the TiO2@ZnIn2S4nanoparticles possessed a well-proportioned core–shell morphology.
SrCe0.92 Nb 0.03 Tm0.05 O 3-δ powders were synthesized by a modified sol-gel method using citrate as a chelating agent.X-ray diffraction(XRD) analysis verified SrCe 0.92 Nb 0.03 Tm 0.05 O 3-δ powders and membranes consisting of a single perovskite phase.The morphologies of the sintered membranes were investigated by using scanning electron microscopy(SEM) technique.Stability tests demonstrated that the Nb introduction into doped strontium cerate greatly enhanced the chemical stability.Electrical conductivities of SrCe 0.92 Nb 0.03 Tm 0.05 O 3-δ and SrCe 0.95 Tm 0.05 O 3-δ were measured by the four-point DC method under 10% H 2 /He atmosphere and temperatures(700-900℃).With a maximum conductivity of 0.0067 S cm^-1 at 900℃,the total electrical conductivity of SrCe 0.92 Nb 0.03 Tm 0.05 O 3-δ increases with increasing temperature.The H 2 permeation flux of SrCe 0.92 Nb 0.03 Tm 0.05 O 3-δ is 0.035 mL cm-2 min-1 when 40% H 2 /He and Ar were used respectively as the feed and sweeping gases at 900℃.
Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and the influences of V-dopant content on calcining temperature and conductivity were reported.The samples were characterized by thermal analysis(TG-DSC) ,X-ray diffraction(XRD) and scanning electron micrograph(SEM) . The apatite was obtained at 800°C,a relatively low temperature in comparison to 1500°C with the conventional solid-state method.The ceramic pellets sintered at 1200°C for 5 h showed a higher relative density than La9.33Si6O26 pellets sintered at 1400°C for 20 h.The conductivities of samples were measured by electrochemical impedance spectroscopy.The conductivity was improved with the increase of V-dopant content on La site.
This paper describes novel Au/NaY catalytic membranes for preferential oxidation of CO (CO-PROX) in an H2-rich gas. NaY zeolite membranes with a high CO2/N2 separation factor were loaded with nanosized Au particles using an ion-exchanged method. X-ray diffraction analyses showed that the structure of the NaY zeolite was not damaged by the ion exchange process. CO-PROX experiments showed that the catalytic membranes had excellent catalytic performance for selective oxidation of CO. The CO/H2 molar ratio on the permeate side decreased with increasing operating temperature in the range of 80-200℃. At 200℃, almost no CO was detected from the permeate stream of a catalytic membrane with the feed con- taining 0.67% CO, 1.33% 02, 32.67% H2, and He in balance. Thus, these Au/NaY catalytic membranes show a promise for CO removal from hydrogen fuels.