A distribution of the magnetic field produced by permanent magnets in the DNB ion source is calculated and analyzed in order to understand the plasma confinement in a cusped magnetic field and optimize plasma discharge. A uniform plasma is obtained in the experiment.
A control model of gas supply system is introduced for ion source and an adaptive discrete-time control algorithm to regulate the hydrogen injection. A real-time feedback control system (RFCS) is designed to control the gas supply for ion source based on the control model and the discrete-time control algorithm. The experimental results have proved that RFCS could regulate the gas supply smoothly, suppress the arc's abrupt over-current at the end of the ion source discharging, prolong the discharge pulse and stabilize the ion concentration. With RFCS, the ion source for neutral beam injection has reached its longest pulse with a length of 4.5 seconds in a stable status.
Excellent vacuum performance ensures a high beam transmission efficiency of the neutral beam injector (NBI). The vacuum performance is mainly determined by the cryoperformance of the cryopanel of the cryocondensation pumps which are the main vacuum pumps of NBI. In order to optimize the cryoperformance, the requirements for the temperature distribution and the heat load of the cryopanel are analysed and the factors that affect the cryopanel's temperature distribution are studied. The results indicate that the temperature difference of the cryopanel can be reduced by fabricating the cryopanel with high thermal conductivity material, increasing its thickness and cutting the distance between the two upward cooling pipes. The results may be applied to a cryopanel cooled by forced flow liquid helium.