Several factors that affect the trajectories of sand particles in a wind-blown sand flux are analyzed by considering the stochastic movement of sand particles transported within turbulent flow in the atmospheric boundary layer. The results show that there are remarkably different trajectories for particles with the same diameter, the same vertical liftoff velocity from sand bed and the same friction ve-locity of wind because of the presence of turbulence flow. The vertical fluctuating velocity of sand particles can be regarded as a reflection of the transport mode, which is related to not only the diameters and liftoff velocity of sand particles but also the shear stress velocity of wind. The critical liftoff velocity and the fraction of each transport mode are calculated for the given particle diameter and friction ve-locity of wind. A comparison of the predicted fraction and the statistical fraction with and without the wind-sand couple effect is made.
Monte Carlo simulations of the extinction rate of electromagnetic wave propagation in the duststorm were presented. The numerical procedure was based on the multiple scattering and independent scattering. The calculated multiple scattering attenuation rate is in good agreement with the measured one,but differs significantly from those obtained under the independent scattering assumption. At the same time,the factors of size parameter,frequency of incident wave,the angle of incident,and sands permittivity and water content have been considered in the attenuation of electromagnetic wave propagation in the duststorm. Numerical results obtained showed that the attenuation rate increases as the fractional volume,frequency of incident wave and sands permittivity increase,and as the angle of incident increases,the attenuation rate decreases.
Aeolian sand ripple and its time evolution are simulated by the discrete particle tracing method (DPTM) presented in this paper. The difference between this method and the current methods is that the former can consider the three main factors relevant to the formation of natural aeolian sand ripples,which are the wind-blown sand flux above the sand bed formed by lots of sand particles with different di-ameters,the particle-bed collision and after it the rebound and ejection of sand particles in the sand bed,the saltation of high-speed sand particles and the creep of low-speed sand particles,respectively. The simulated aeolian sand ripple is close to the natural sand ripple not only in basic shape and characteristic,particle size segregation and stratigraphy,but also in formation stages. In addition,three important speeds can be obtained by this method,which are the propagation speed of the saturated aeolian sand ripple and the critical frictional wind speeds of emergence and disappearance of sand ripple.
This paper presents a new simple method of implicit time integration with two control parameters for solving initial-value problems of dynamics such that its accuracy is at least of order two along with the conditional and unconditional stability regions of the parameters. When the control parameters in the method are optimally taken in their regions, the accuracy may be improved to reach of order three. It is found that the new scheme can achieve lower numerical amplitude dissipation and period dispersion than some of the existing methods, e.g. the Newmark method and Zhai's approach, when the same time step size is used. The region of time step dependent on the parameters in the new scheme is explicitly obtained. Finally, some examples of dynamic problems are given to show the accuracy and efficiency of the proposed scheme applied in dynamic systems.
It is very necessary for the investigation on mechanism of windblown sand movement to under- stand and find out effective measures of preventing and reducing danger of windblown sands,which al- so deals with some general characters and hot spots in the scientific forelands,such as multi-scale prob- lems,interactions among multi-physical-fields,ran- domness and nonlinearity as well as complex sys- tems.In recent years,a series of experiments in wind tunnels and theoretical modeling as well as computer simulation have been undertaken in the re- search group of environmental mechanics on wind- blown sand movement in Lanzhou University with the point of mechanical and geography intersecting view.Some original and essential progress has been achieved, which includes that the main regu- larities of charges on sand particles and the electric field in windblown sand flux and the effect of the electric field on the flux and the microwave propaga- tion are revealed,and the evolution process of windblown sand flux under the mutual couple inter- actions among several physical fields are predicted as well as the main features of Aeolian sand ripples are simulated.
It is very necessary for investigation on mechanism of windblown sand movement to understand and find out effective measures of preventing and reducing windblown sand, This also deals with some general features and hot spots in the scientific forelands. such as multi-scale problems. interactions among. multi-physical-fields, randomness and nonlinearity as well as complex systems. In recent years, a series of experiments in wind tunnels and theoretical modeling as well as computer simulation have been taken by our research group (the Laboratory of Environmental Mechanics on Windblown Sand Movement in Lanzhou University )in a cross-disciplinary (mechanics and geography) viewpoint. Several original and essential studies were explored such as the main regularities of charges on sand particles, the mechanisms of electric field in windblown sand flux, the effects induced by the electric field on the flux, the microwave propagations, the evolution process of windblown and flux under mutual couple interations among several physical fields, and the simulation of the main features of Aeolian sand ripples.