The stress potential function theory for the plane elasticity of octagonal quasicrystals is developed. By introducing stress functions, a large number of basic equations involving the elasticity of octagonal quasicrystals are reduced to a single partial differential equation. Furthermore, we develop the complex variable function method (Lekhnitskii method) for anisotropic elasticity theory to that for quasicrystals. With the help of conformal transformation, an exact solution for the elliptic hole of quasicrystals is presented. The solution of the Griffith crack problem, as a special case of the results, is obtained. As a consequence, the phonon stress intensity factor is derived analytically.
This paper deals with a class of upper triangular infinite-dimensional Hamilto- nian operators appearing in the elasticity theory. The geometric multiplicity and algebraic index of the eigenvalue are investigated. Furthermore, the algebraic multiplicity of the eigenvalue is obtained. Based on these properties, the concrete completeness formulation of the system of eigenvectors or root vectors of the Hamiltonian operator is proposed. It is shown that the completeness is determined by the system of eigenvectors of the operator entries. Finally, the applications of the results to some problems in the elasticity theory are presented.