The dendrite morphologies and spacings of directionally solidified DZ125 superalloy were investigated under high thermal gradient about 500 K/cm. The results reveal that, with increasing cooling rate, both the spacings of primary and secondary dendrite arms decrease, and the dendrite morphologies transit from coarse to superfme dendrite. The secondary dendrite arms trend to be refined and be well developed, and the tertiary dendrite will occur. The predictions of the Kurz/Fisher model and the Hunt/Lu model accord basically with the experimental data for primary dendrite arm spacing. The regression equation of the primary dendrite arm spacings 21 and the cooling rate Vc is λ1 = 0.013 Vc^-0.32. The regression equation of the secondary dendrite arm spacing λ2 and the cooling rate Vc is λ2 = 0.00258 Vc^-0.31, which gives good agreement with the Feurer/Wunderlin model.
ZHANG Weiguo LIU Lin ZHAO Xinbao HUANG Taiwen YU Zhuhuan QU Min FU Hengzhi
The primary dendrite morphology and spacing of DZ125 superalloy have been observed during directional solidification under high thermal gradient about 500 K/cm. The results reveal that the primary dendrite arm spacing decreases from 94 μm to 35.8 μm with the increase of directional solidification cooling rate from 2.525 K/s to 36.4 K/s. The regression equation of the primary dendrite arm spacings A, versus cooling rate is λ1=0.013(GV)-0.32. The predictions of Kurz/Fisher model and Hunt/Lu model accord reasonably well with the experimental data. The influence of directional solidification rate under variable thermal gradient on the primary dendrite arm spacing has also been investigated.
The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s-1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of γ' precipitate changes from cube to sphere shape and distributes uniformly in both dendrite core and interdendritic regions. MC carbide morphology changes from coarse block to fine-strip and then to Chinese-script and mainly consists of Ta, W, and Hf elements. The γ-γ' eutectic fraction increases firstly and then decreases, and similar regularity is also found for the variation of segregation ratio of elements.
The influence of melt convection on dendrite growth during the upward-directional solidification of Pb-33%Sn binary alloys was investigated.The melt convection was modulated by traveling magnetic field.When the direction of traveling magnetic field was changed from upward to downward,the primary dendrite spacing gradually increased,and the distribution peak of the primary dendrite spacing shifted to the field of narrower spacing.These result from the different intensities of melt convection,which are controlled by the traveling magnetic field.The effects of the traveling magnetic field on melt convection are similar to those of adjustment in the gravity level,thus,the primary dendrite spacing varies.When the intensity of the traveling magnetic field was 1 mT,and the drawing speed was 50 μm/s,the gravity acceleration reached 0.22g for the downward-traveling magnetic field and 3.07g for the upward-traveling magnetic field.