Large-scale deformation can not be detected by traditional D-InSAR technique because of the limit of its detectable deformation gradient,we propose a method that combines SAR data with point cloud data obtained by 3D laser scanning to improve the gradient of deformation detection.The proposed method takes advantage of high-density of 3D laser scanning point cloud data and its high precision of point positioning after 3D modeling.The specifc process can be described as follows:frst,large-scale deformation points in the interferogram are masked out based on interferometric coherence;second,the interferogram with holes is unwrapped to obtain a deformation map with holes,and last,the holes in the deformation map are flled with point cloud data using inverse distance weighting algorithm,which will achieve seamless connection of monitoring region.We took the embankment dam above working face of a certain mining area in Shandong province as an example to study large-scale deformation in mining area using the proposed method.The results show that the maximum absolute error is 64 mm,relative error of maximum subsidence value is 4.95%,and they are consistent with leveling data of ground observation stations,which confrms the feasibility of this method.The method we presented provides new ways and means for achieving large-scale deformation monitoring by D-InSAR in mining area.
The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.