In this study, from the travel time data recorded in the Tianshan passive seismic array experiment, we present the P-wave velocity structure of the upper mantle down to 660 km along the Kuqa-Kuitun pro-file in terms of seismic tomography technique. Based on the P-wave velocity model, we derive the corresponding 2D upper mantle density model. The 2D small-scale convection of the upper mantle underneath the Tianshan Mountains in China driven by the density anomalies is simulated using the hybrid finite element method combining with the marker-in-cell technique. The main features of the upper mantle convection and the reciprocation between the convection and mountain building are in-vestigated. The results manifest that (1) in the upper mantle underneath the Junggar basin and North Tianshan exists a counterclockwise convection, which scale is ~ 500 km; (2) underneath the Tarim ba-sin and South Tianshan exists a clockwise northward convection, which is relatively weak; (3) the convective velocity at the top of the upper mantle underneath the Tianshan Mountains in China should not be less than 20 mm/a, while considering the dependent of convective velocity on the viscosity; (4) the northward extrusion of the Tarim block plays a key role in the Cenozoic Tianshan mountain building and the present-day tectonic deformation of the Tianshan range is related closely to the upper mantle convection; and (5) the northward subduction of the Tarim block does not influence obviously the up-per mantle convection.
From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of the basins on both sides of the mountain, the spli
LI YuLIU QiYuanCHEN JiuHuiLI ShunChengGUO BiaoLAI YuanGen