The existence conditions of globally proper efficient points and a useful property of ic- cone-convexlike set-valued maps are obtained. Under the assumption of the ic-cone-convexlikeness, the optimality conditions for globally proper efficient solutions are established in terms of Lagrange multipliers. The new concept of globally proper saddle-point for an appropriate set-valued Lagrange map is introduced and used to characterize the globally proper efficient solutions. The results which are obtained in this paper are proven under the conditions that the ordering cone need not to have a nonempty interior.