For precision delivery of the Bragg peak of a heavy-ion beam to a target volume in ion beam therapy, it is necessary to know the tissue stopping power. A general approach to solve this problem in ion beam therapy is to convert X-ray CT (computed tomography) numbers into water-equivalent path length (WEPL) coefficients using a CT-WEPL calibration curve for all voxels traversed by the beam. This work aims at establishing a CT-WEPL coefficient calibration curve for the heavy ion therapy project at IMP, so as to compute the range of carbon ion beams in tissues easily according to the patient CT data. Several tissueequivalent materials were applied to measure their WEPL coefficients using a high-energy carbon ion beam in this work. A CT-WEPL calibration curve was obtained through fitting the measured data, which can be used directly for dose optimization and facilitates the design of patient treatment plans significantly at IMP.
An active spot beam delivery system for heavy ion therapy has been developed based on the Cooling Storage Ring at HIRFL-CSR, where the pencil carbon-ion beams were scanned within a target volume transversely by a pair of orthogonal (horizontal and vertical) dipole magnets to paint the slices of the target volume and longitudinally by active energy variation of the synchrotron slice by slice. The unique techniques such as dose shaping via active energy variation and magnetic deflection constitute a promising three-dimensional conformal even intensity-modulated radiotherapy with heavy ions at HIRFL-CSR. In this paper, the verification of active energy variation and the calibration of steerable beam deflection are shown, as the basic functionality components of the active spot-scanning system. Additionally, based on the capability of creating homogeneous irradiation fields with steerable pencil beams, a radiobiological experiment like cell survival measurement has been performed aiming at comparison of the radiobiological effects under active and passive beam deliveries.
The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally- mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size Of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviati^n/mean) in the target volume is better than 95%.