The effects of Nb on the thermal stability and impact toughness of ultra-high intrinsic coercivity of Nd-Fe-B magnets were investigated.The results showed that the addition of Nb could improve the thermal stability,and obviously increased the impact toughness of sintered Nd-Fe-B magnets.The optimum thermal stability of sintered Nd-Fe-B magnets was obtained when the content of Nb was 1.0 at.%.The maximum impact toughness of sintered Nd-Fe-B magnets was obtained when the content of Nb was 1.5 at.%,but the magnetic properties of sintered Nd-Fe-B magnets drastically deteriorated when the content of Nb increased from 1.0 at.% to 1.5 at.%.The microstructure showed that overfull Nb addition made many ultra-fine grains get together,which led to the density of sintered Nd-Fe-B magnets decline and drastically deteriorated the magnetic properties of sintered Nd-Fe-B magnets.
The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultaneously with increasing temperature, but the squareness of the magnets has hardly been changed. The temperature coefficients of remanence (α) and coercivity (β) for the magnets were calculated by two different methods, and the variations of the temperature coefficients and the microstructure of sintered Nd-Fe-B magnets were analyzed. The temperature coefficients of remanence (α) and coercivity (β) for the sintered magnets are very small, and the existence of fine microstructure is necessary to obtain sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity.
HU ZhihuaCHENG XinghuaZHU MinggangLI WeiLIAN Fazeng