The effects of two parallel porous walls are investigated, consisting of the Darcy number and the porosity of a porous medium, on the behavior of turbulent shear flows as well as skin-friction drag. The turbulent channel flow with a porous surface is directly simulated by the lattice Boltzmann method (LBM). The Darcy-Brinkman- Forcheimer (DBF) acting force term is added in the lattice Boltzmann equation to simu- late the turbulent flow bounded by porous walls. It is found that there are two opposite trends (enhancement or reduction) for the porous medium to modify the intensities of the velocity fluctuations and the Reynolds stresses in the near wall region. The parametric study shows that flow modification depends on the Darcy number and the porosity of the porous medium. The results show that, with respect to the conventional impermeable wall, the degree of turbulence modification does not depend on any simple set of param- eters obviously. Moreover, the drag in porous wall-bounded turbulent flow decreases if the Darcy number is smaller than the order of O(10-4) and the porosity of porous walls is up to 0.4.
Interaction between turbulence and particles is investigated in a channel flow. The fluid motion is calculated using direct numerical simulation(DNS) with a lattice Boltzmann(LB) method, and particles are tracked in a Lagrangian framework through the action of force imposed by the fluid. The particle diameter is smaller than the Kolmogorov length scale, and the point force is used to represent the feedback force of particles on the turbulence. The effects of particles on the turbulence and skin friction coefficient are examined with different particle inertias and mass loadings. Inertial particles suppress intensities of the spanwise and wall-normal components of velocity, and the Reynolds shear stress. It is also found that, relative to the reference particle-free flow,the overall mean skin-friction coefficient is reduced by particles. Changes of near wall turbulent structures such as longer and more regular streamwise low-speed streaks and less ejections and sweeps are the manifestation of drag reduction.