We report on a diode-pumped passively continuous wave (cw) mode-locked Tm:YAP laser with a double-wall carbon nanotube (DWCNT) absorber operating at a wavelength of 2023 nm for the first time, to the best our knowledge. The DWCNT absorber is fabricated on a hydrophilic quartz substrate by using the vertical evaporation technique. The output power is as high as 375 mW. A stable pulse train with a repetition rate of 72.26 MHz is generated with a highest single pulse energy of 5.2 μJ.
By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensation, the minimum pulse duration of 1.7 ps with a repetition rate of 94 MHz was obtained at the central wavelength of 1062.6 nm. The average output power amounts to 355 m W under the absorbed pump power of 15 W. The maximum peak power of the mode-locking laser is up to 2.2 k W, and the single pulse energy is 3.8nJ.